A method for seismic design of RC frame buildings using fundamental mode and plastic rotation capacity

Vijayanarayanan A.R., Rupen Goswami, Murty C. V. R.
{"title":"A method for seismic design of RC frame buildings using fundamental mode and plastic rotation capacity","authors":"Vijayanarayanan A.R., Rupen Goswami, Murty C. V. R.","doi":"10.5459/bnzsee.55.2.112-128","DOIUrl":null,"url":null,"abstract":"A seismic design method is proposed for RC frame buildings, with focus on two of the seven virtues of earthquake resistant buildings, namely deformation capacity and desirable collapse mechanism. Fundamental lateral translation mode of the building and plastic rotation capacity of beams are included as input to estimate lateral force demand. Guidelines are provided to proportion beam and column cross-sections through: (a) closed-form expressions of flexural rigidities to maximize participation of the fundamental mode, and (b) relative achievable plastic rotation capacity using current design and detailing practice. This method is seen to surpass two prominent displacement-based design methods reported in literature. Results of nonlinear static pushover and nonlinear time history analyses of buildings of three different heights designed by this and the said two methods are used to make a case for the proposed method; the proposed method is able to control plastic rotation demand in beams and provide at least 20% more lateral deformation capacity than the said methods.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.55.2.112-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

A seismic design method is proposed for RC frame buildings, with focus on two of the seven virtues of earthquake resistant buildings, namely deformation capacity and desirable collapse mechanism. Fundamental lateral translation mode of the building and plastic rotation capacity of beams are included as input to estimate lateral force demand. Guidelines are provided to proportion beam and column cross-sections through: (a) closed-form expressions of flexural rigidities to maximize participation of the fundamental mode, and (b) relative achievable plastic rotation capacity using current design and detailing practice. This method is seen to surpass two prominent displacement-based design methods reported in literature. Results of nonlinear static pushover and nonlinear time history analyses of buildings of three different heights designed by this and the said two methods are used to make a case for the proposed method; the proposed method is able to control plastic rotation demand in beams and provide at least 20% more lateral deformation capacity than the said methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基本模态和塑性转动能力的钢筋混凝土框架结构抗震设计方法
提出了钢筋混凝土框架建筑的抗震设计方法,重点讨论了抗震建筑的七大优点中的两个,即变形能力和理想的倒塌机制。建筑的基本横向平移模式和梁的塑性转动能力被包括在内,作为估计横向力需求的输入。提供了通过以下方式对梁和柱横截面进行比例划分的指南:(a)弯曲刚度的闭合表达式,以最大限度地提高基本模式的参与度;(b)使用当前设计和详细实践的相对可实现塑性旋转能力。该方法被认为超过了文献中报道的两种突出的基于位移的设计方法。利用该方法和上述两种方法设计的三种不同高度建筑物的非线性静力pushover和非线性时程分析结果,为该方法提供了一个实例;所提出的方法能够控制梁中的塑性旋转需求,并且提供比所述方法多至少20%的横向变形能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Method to identify if torsional mode of a building is its first mode Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1