Advances in solar forecasting: Computer vision with deep learning

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2023-09-01 DOI:10.1016/j.adapen.2023.100150
Quentin Paletta , Guillermo Terrén-Serrano , Yuhao Nie , Binghui Li , Jacob Bieker , Wenqi Zhang , Laurent Dubus , Soumyabrata Dev , Cong Feng
{"title":"Advances in solar forecasting: Computer vision with deep learning","authors":"Quentin Paletta ,&nbsp;Guillermo Terrén-Serrano ,&nbsp;Yuhao Nie ,&nbsp;Binghui Li ,&nbsp;Jacob Bieker ,&nbsp;Wenqi Zhang ,&nbsp;Laurent Dubus ,&nbsp;Soumyabrata Dev ,&nbsp;Cong Feng","doi":"10.1016/j.adapen.2023.100150","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable energy forecasting is crucial for integrating variable energy sources into the grid. It allows power systems to address the intermittency of the energy supply at different spatiotemporal scales. To anticipate the future impact of cloud displacements on the energy generated by solar facilities, conventional modeling methods rely on numerical weather prediction or physical models, which have difficulties in assimilating cloud information and learning systematic biases. Augmenting computer vision with machine learning overcomes some of these limitations by fusing real-time cloud cover observations with surface measurements acquired from multiple sources. This Review summarizes recent progress in solar forecasting from multisensor Earth observations with a focus on deep learning, which provides the necessary theoretical framework to develop architectures capable of extracting relevant information from data generated by ground-level sky cameras, satellites, weather stations, and sensor networks. Overall, machine learning has the potential to significantly improve the accuracy and robustness of solar energy meteorology; however, more research is necessary to realize this potential and address its limitations.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"11 ","pages":"Article 100150"},"PeriodicalIF":13.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266679242300029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Renewable energy forecasting is crucial for integrating variable energy sources into the grid. It allows power systems to address the intermittency of the energy supply at different spatiotemporal scales. To anticipate the future impact of cloud displacements on the energy generated by solar facilities, conventional modeling methods rely on numerical weather prediction or physical models, which have difficulties in assimilating cloud information and learning systematic biases. Augmenting computer vision with machine learning overcomes some of these limitations by fusing real-time cloud cover observations with surface measurements acquired from multiple sources. This Review summarizes recent progress in solar forecasting from multisensor Earth observations with a focus on deep learning, which provides the necessary theoretical framework to develop architectures capable of extracting relevant information from data generated by ground-level sky cameras, satellites, weather stations, and sensor networks. Overall, machine learning has the potential to significantly improve the accuracy and robustness of solar energy meteorology; however, more research is necessary to realize this potential and address its limitations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳预报的进展:具有深度学习的计算机视觉
可再生能源预测是将可变能源纳入电网的关键。它允许电力系统在不同的时空尺度上解决能源供应的间歇性问题。为了预测云位移对太阳能设施产生的能量的未来影响,传统的建模方法依赖于数值天气预报或物理模型,这在吸收云信息和学习系统偏差方面存在困难。利用机器学习增强计算机视觉,通过将实时云层观测与从多个来源获得的地面测量数据融合在一起,克服了其中的一些限制。本文总结了基于多传感器地球观测的太阳预报的最新进展,重点是深度学习,这为开发能够从地面天空摄像机、卫星、气象站和传感器网络生成的数据中提取相关信息的体系结构提供了必要的理论框架。总的来说,机器学习有可能显著提高太阳能气象的准确性和鲁棒性;然而,需要更多的研究来实现这一潜力并解决其局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1