Making autonomous vehicle systems human-like: lessons learned from accident experiences in traffic

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Enterprise Information Systems Pub Date : 2021-11-08 DOI:10.1080/17517575.2021.1998641
C. K. H. Lee, K. Wu
{"title":"Making autonomous vehicle systems human-like: lessons learned from accident experiences in traffic","authors":"C. K. H. Lee, K. Wu","doi":"10.1080/17517575.2021.1998641","DOIUrl":null,"url":null,"abstract":"ABSTRACT The COVID-19 pandemic has hastened the adoption of autonomous vehicles (AVs) to minimise human-to-human contact. Yet, prior investigations suggest that AVs are accident-prone when they behave differently from humans. It is necessary to design an autonomous vehicle system (AVS) that can take human behaviour into account. This study capitalises on the wealth of data from traffic accidents caused by humans and discovers association rules to improve AVSs. Findings show that fatal accidents likely co-occur with “right near”, “head on” or “lane side swipe” scenarios. They provide important implications for designing traffic scenarios that are critical for training an AVS.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1998641","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The COVID-19 pandemic has hastened the adoption of autonomous vehicles (AVs) to minimise human-to-human contact. Yet, prior investigations suggest that AVs are accident-prone when they behave differently from humans. It is necessary to design an autonomous vehicle system (AVS) that can take human behaviour into account. This study capitalises on the wealth of data from traffic accidents caused by humans and discovers association rules to improve AVSs. Findings show that fatal accidents likely co-occur with “right near”, “head on” or “lane side swipe” scenarios. They provide important implications for designing traffic scenarios that are critical for training an AVS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
让自动驾驶汽车系统人性化:从交通事故经验中吸取的教训
摘要新冠肺炎疫情加速了自动驾驶汽车(AV)的采用,以最大限度地减少人与人之间的接触。然而,先前的调查表明,当AV的行为与人类不同时,它们很容易发生事故。有必要设计一种能够考虑人类行为的自动驾驶汽车系统。这项研究利用了人类造成的交通事故的丰富数据,并发现了改善AVS的关联规则。调查结果显示,致命事故可能与“右近”、“头朝上”或“车道侧扫”场景同时发生。它们为设计对训练AVS至关重要的交通场景提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
期刊最新文献
Decentralized finance (DeFi): a paradigm shift in the Fintech Credit risk evaluation on technological SMEs in China An exploratory data analysis of malware/ransomware cyberattacks: insights from an extensive cyber loss dataset Co-creating value in manufacturing supply chains: unravelling the dynamics of innovation ecosystems A systematic data-driven approach for targeted marketing in enterprise information system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1