Inverse kinematic analysis of 3 DOF 3-PRS PM for machining on inclined prismatic surfaces

Hishantkumar Rashmikantbhai Patel, Y. Patel
{"title":"Inverse kinematic analysis of 3 DOF 3-PRS PM for machining on inclined prismatic surfaces","authors":"Hishantkumar Rashmikantbhai Patel, Y. Patel","doi":"10.11591/ijra.v9i2.pp135-142","DOIUrl":null,"url":null,"abstract":"Parallel manipulators (PMs) are family members of modern manipulators based on the closed loop structural architecture. 3-PRS (prismatic, revolute, spherical) manipulator with 3DOF is investigated for its machining capability on prismatic surfaces as it possesses greater structural stiffness, higher pay load caring capacity, more precision compare to serial manipulators as well as less accumulation of errors at joints within a constrained workspace. The said manipulator can be utilized in various fields of application such as precise manufacturing, medical surgery, space technology and many more. In this paper, the primary focus on usage of parallel manipulator in industrial applications such as drilling and grooving on inclined work part surface. Inverse kinematic solutions are used for drilling, square and round profiles on inclined surface using parallel manipulator.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"135-142"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijra.v9i2.pp135-142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parallel manipulators (PMs) are family members of modern manipulators based on the closed loop structural architecture. 3-PRS (prismatic, revolute, spherical) manipulator with 3DOF is investigated for its machining capability on prismatic surfaces as it possesses greater structural stiffness, higher pay load caring capacity, more precision compare to serial manipulators as well as less accumulation of errors at joints within a constrained workspace. The said manipulator can be utilized in various fields of application such as precise manufacturing, medical surgery, space technology and many more. In this paper, the primary focus on usage of parallel manipulator in industrial applications such as drilling and grooving on inclined work part surface. Inverse kinematic solutions are used for drilling, square and round profiles on inclined surface using parallel manipulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三自由度3-PRS PM在倾斜棱柱表面加工的运动学反分析
并联机械手是基于闭环结构体系结构的现代机械手家族成员。研究了具有3DOF的3-PRS(棱镜、旋转、球面)机械手在棱镜表面上的加工能力,因为它具有更大的结构刚度、更高的有效载荷照顾能力、与串行机械手相比更高的精度,以及在受限工作空间内关节处的误差积累更少。所述机械手可用于各种应用领域,如精密制造、医疗外科、空间技术等。本文主要讨论了并联机械手在倾斜工件表面钻孔和开槽等工业应用中的应用。使用并联机械手对倾斜表面上的方形和圆形轮廓进行了运动学逆解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines. Cooperative vs. Teleoperation Control of the Steady Hand Eye Robot with Adaptive Sclera Force Control: A Comparative Study. Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues. Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery. Fully Distributed Shape Sensing of a Flexible Surgical Needle Using Optical Frequency Domain Reflectometry for Prostate Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1