Transform Methods for Heavy-Traffic Analysis

Q1 Mathematics Stochastic Systems Pub Date : 2018-11-14 DOI:10.1287/stsy.2019.0056
Daniela Hurtado-Lange, S. T. Maguluri
{"title":"Transform Methods for Heavy-Traffic Analysis","authors":"Daniela Hurtado-Lange, S. T. Maguluri","doi":"10.1287/stsy.2019.0056","DOIUrl":null,"url":null,"abstract":"The drift method was recently developed to study queuing systems in steady state. It was used successfully to obtain bounds on the moments of the scaled queue lengths that are asymptotically tight in heavy traffic and in a wide variety of systems, including generalized switches, input-queued switches, bandwidth-sharing networks, and so on. In this paper, we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment-generating functions. This approach simplifies the proofs of the drift method and provides a new perspective on the drift method. We present a general framework and then use the moment-generating function method to obtain the stationary distribution of scaled queue lengths in heavy traffic in queuing systems that satisfy the complete resource pooling condition. In particular, we study load balancing systems and generalized switches under general settings.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0056","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 27

Abstract

The drift method was recently developed to study queuing systems in steady state. It was used successfully to obtain bounds on the moments of the scaled queue lengths that are asymptotically tight in heavy traffic and in a wide variety of systems, including generalized switches, input-queued switches, bandwidth-sharing networks, and so on. In this paper, we develop the use of transform techniques for heavy-traffic analysis, with a special focus on the use of moment-generating functions. This approach simplifies the proofs of the drift method and provides a new perspective on the drift method. We present a general framework and then use the moment-generating function method to obtain the stationary distribution of scaled queue lengths in heavy traffic in queuing systems that satisfy the complete resource pooling condition. In particular, we study load balancing systems and generalized switches under general settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大流量分析的变换方法
漂移法是最近发展起来的研究稳态排队系统的方法。它被成功地用于获得在重流量和各种系统中(包括广义交换机、输入队列交换机、带宽共享网络等)渐近紧的缩放队列长度的矩的界。在本文中,我们开发了将变换技术用于重流量分析,特别关注矩生成函数的使用。该方法简化了漂移法的证明,为漂移法的研究提供了新的视角。我们提出了一个通用框架,然后使用矩生成函数方法来获得满足完全资源池条件的排队系统中重流量情况下缩放队列长度的平稳分布。特别地,我们研究了在一般设置下的负载平衡系统和广义交换机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
期刊最新文献
Sharp Waiting-Time Bounds for Multiserver Jobs Asymptotic Optimality of Switched Control Policies in a Simple Parallel Server System Under an Extended Heavy Traffic Condition Distributionally Robust Observable Strategic Queues The BAR Approach for Multiclass Queueing Networks with SBP Service Policies Ergodic Control of Bipartite Matching Queues with Class Change and Matching Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1