Comment on 'Statistical Modelling: the Two Cultures' by Leo Breiman

Efrén Cruz‐Cortés, Fan Yang, E. Juarez-colunga, Theodore Warsavage, D. Ghosh
{"title":"Comment on 'Statistical Modelling: the Two Cultures' by Leo Breiman","authors":"Efrén Cruz‐Cortés, Fan Yang, E. Juarez-colunga, Theodore Warsavage, D. Ghosh","doi":"10.1353/obs.2021.0021","DOIUrl":null,"url":null,"abstract":"Abstract:The discussion paper \"Statistical Modeling: the Two Cultures\" (Statistical Science, Vol 16, 2001) by the late Leo Breiman sent shockwaves throughout the statistical community and subsequently redirected the efforts of much of the field towards machine learning, high-dimensional analysis and data mining approaches. In this discussion, we discuss some of the implications of this work in the sphere of causal inference. In particular, we define the concept of comparability, which is fundamental to the ability to draw causal inferences and reinterpret some concepts in high-dimensional data analysis from this viewpoint. One of the points we highlight in this discussion is the need to consider data-adaptive estimands for causal effects with high-dimensional confounders. We also revisit matching and develop some mathematical formalism for matching algorithms.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2021.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:The discussion paper "Statistical Modeling: the Two Cultures" (Statistical Science, Vol 16, 2001) by the late Leo Breiman sent shockwaves throughout the statistical community and subsequently redirected the efforts of much of the field towards machine learning, high-dimensional analysis and data mining approaches. In this discussion, we discuss some of the implications of this work in the sphere of causal inference. In particular, we define the concept of comparability, which is fundamental to the ability to draw causal inferences and reinterpret some concepts in high-dimensional data analysis from this viewpoint. One of the points we highlight in this discussion is the need to consider data-adaptive estimands for causal effects with high-dimensional confounders. We also revisit matching and develop some mathematical formalism for matching algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评Leo Breiman的《统计模型:两种文化》
摘要:已故Leo Breiman的讨论论文“统计建模:两种文化”(《统计科学》,2001年第16卷)在整个统计界掀起了轩然大波,随后将该领域的大部分工作转向了机器学习、高维分析和数据挖掘方法。在这次讨论中,我们讨论了这项工作在因果推理领域的一些含义。特别是,我们定义了可比性的概念,这是从这个角度得出因果推断和重新解释高维数据分析中一些概念的能力的基础。我们在本次讨论中强调的一点是,需要考虑高维混杂因素的因果效应的数据自适应估计。我们还重新审视了匹配,并为匹配算法开发了一些数学形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1