Non-destructive detection of chilling injury in kiwifruit using a dual-laser scanning system with a principal component analysis - back propagation neural network

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-02-24 DOI:10.1177/09670335211061842
Zhen Wang, R. Künnemeyer, A. McGlone, Jason Sun, J. Burdon, M. Cree
{"title":"Non-destructive detection of chilling injury in kiwifruit using a dual-laser scanning system with a principal component analysis - back propagation neural network","authors":"Zhen Wang, R. Künnemeyer, A. McGlone, Jason Sun, J. Burdon, M. Cree","doi":"10.1177/09670335211061842","DOIUrl":null,"url":null,"abstract":"As a physiological disorder, chilling injury in kiwifruit may develop when the fruit are stored for long periods at a low storage temperature of 0–1°C. Presence of the disorder, inconsistent with marketing requirements for high-quality fruit, may lead to substantial financial and reputational losses. Thus, early detection or removal of chill-damaged fruit is desirable. This study demonstrates a novel dual-laser scanning system which has potential to be developed into a fast online system for the detection of chilling injury in Actinidia chinensis var. chinensis ‘Zesy002’ kiwifruit. The system consists of two laser modules at 730 and 880 nm wavelengths, a scanning mechanism and two detectors at partial (90°) and full (180°) light transmission. A sample of 231 kiwifruit was used to prove the concept, including 80 sound and 151 chill-damaged fruit of three different severity categories (slight, moderate and severe). A principal component analysis – back propagation neural network was used to classify fruit with 5-fold cross-validation. A comparison was made with standard visible-near infrared (Vis-NIR) interactance spectroscopy used to classify the same fruit using the same modelling algorithm. The dual-laser scanning system showed a slightly higher binary classification accuracy than the Vis-NIR spectroscopy, with an average accuracy of 95% for distinguishing sound and chill-damaged fruit. The classification error rate was 0% for severe damaged fruit. These experimental results demonstrate the potential of this dual-laser scanning system for the detection of chill-damaged fruit. The setup using only two wavelengths, its unique scanning operation and flexible system layout make it practical and attractive for future development for application on high-speed fruit graders.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211061842","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

As a physiological disorder, chilling injury in kiwifruit may develop when the fruit are stored for long periods at a low storage temperature of 0–1°C. Presence of the disorder, inconsistent with marketing requirements for high-quality fruit, may lead to substantial financial and reputational losses. Thus, early detection or removal of chill-damaged fruit is desirable. This study demonstrates a novel dual-laser scanning system which has potential to be developed into a fast online system for the detection of chilling injury in Actinidia chinensis var. chinensis ‘Zesy002’ kiwifruit. The system consists of two laser modules at 730 and 880 nm wavelengths, a scanning mechanism and two detectors at partial (90°) and full (180°) light transmission. A sample of 231 kiwifruit was used to prove the concept, including 80 sound and 151 chill-damaged fruit of three different severity categories (slight, moderate and severe). A principal component analysis – back propagation neural network was used to classify fruit with 5-fold cross-validation. A comparison was made with standard visible-near infrared (Vis-NIR) interactance spectroscopy used to classify the same fruit using the same modelling algorithm. The dual-laser scanning system showed a slightly higher binary classification accuracy than the Vis-NIR spectroscopy, with an average accuracy of 95% for distinguishing sound and chill-damaged fruit. The classification error rate was 0% for severe damaged fruit. These experimental results demonstrate the potential of this dual-laser scanning system for the detection of chill-damaged fruit. The setup using only two wavelengths, its unique scanning operation and flexible system layout make it practical and attractive for future development for application on high-speed fruit graders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析-反向传播神经网络的双激光扫描猕猴桃冷害无损检测
作为一种生理障碍,猕猴桃在0–1°C的低温下长期贮藏可能会产生冷害。这种混乱的存在与高质量水果的营销要求不一致,可能会导致巨大的财务和声誉损失。因此,早期检测或去除低温受损的水果是可取的。本研究展示了一种新型的双激光扫描系统,该系统有可能发展成为一种快速在线检测猕猴桃冷害的系统。该系统由两个730和880 nm波长的激光模块、一个扫描机构和两个部分(90°)和完全(180°)光透射的探测器组成。以231个猕猴桃为样本来证明这一概念,其中包括80个声音和151个不同严重程度(轻度、中度和重度)的冷损伤果实。采用主成分分析-反向传播神经网络对水果进行5倍交叉验证。将其与使用相同建模算法对相同水果进行分类的标准可见-近红外(Vis-NIR)相互作用光谱进行了比较。双激光扫描系统显示出比Vis-NIR光谱略高的二元分类准确度,在区分声音和冷害水果方面的平均准确度为95%。严重受损果实的分类错误率为0%。这些实验结果证明了这种双激光扫描系统在检测冷害水果方面的潜力。该装置仅使用两个波长,其独特的扫描操作和灵活的系统布局使其具有实用性,对未来在高速水果分级机上的应用具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1