Deep learning approach analysis model prediction and classification poverty status

Musli Yanto, Yogi Wiyandra, Sarjon Defit
{"title":"Deep learning approach analysis model prediction and classification poverty status","authors":"Musli Yanto, Yogi Wiyandra, Sarjon Defit","doi":"10.11591/ijai.v12.i1.pp459-468","DOIUrl":null,"url":null,"abstract":"<span lang=\"EN-US\">The problem of poverty is a scourge for every developing country coupled with the economic crisis that occurred during the COVID-19 pandemic. The impact of these problems is felt directly by the people in Indonesia, especially in the Province of West Sumatra. This study aims to predict and classify the level of poverty status by developing an analytical model based on the deep learning (DL) approach. The methods used in this study include the K-Means method, artificial neural network (ANN), and support vector Machine (SVM). The analytical model will be optimized using the Pearson Correlation (PC) method to measure the accuracy of the analysis. The variable indicator uses the parameters of population (</span><em><span lang=\"EN-US\">X<sub>1</sub></span></em><span lang=\"EN-US\">), poverty rate (</span><em><span lang=\"EN-US\">X<sub>2</sub></span></em><span lang=\"EN-US\">), income (</span><em><span lang=\"EN-US\">X<sub>3</sub></span></em><span lang=\"EN-US\">), and poverty percentage (</span><em><span lang=\"EN-US\">X<sub>4</sub></span></em><span lang=\"EN-US\">). The results of the study present prediction and classification output with a validity level of accuracy of 99.8%. Based on these results, it can be concluded that the proposed DL analysis model can present an updated analytical model that is quite effective in carrying out the prediction and classification process. The research findings also contribute to the initial handling of the problem of poverty.</span>","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i1.pp459-468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of poverty is a scourge for every developing country coupled with the economic crisis that occurred during the COVID-19 pandemic. The impact of these problems is felt directly by the people in Indonesia, especially in the Province of West Sumatra. This study aims to predict and classify the level of poverty status by developing an analytical model based on the deep learning (DL) approach. The methods used in this study include the K-Means method, artificial neural network (ANN), and support vector Machine (SVM). The analytical model will be optimized using the Pearson Correlation (PC) method to measure the accuracy of the analysis. The variable indicator uses the parameters of population (X1), poverty rate (X2), income (X3), and poverty percentage (X4). The results of the study present prediction and classification output with a validity level of accuracy of 99.8%. Based on these results, it can be concluded that the proposed DL analysis model can present an updated analytical model that is quite effective in carrying out the prediction and classification process. The research findings also contribute to the initial handling of the problem of poverty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习方法分析模型预测和分类贫困状况
贫困问题是每个发展中国家的祸害,加上新冠肺炎大流行期间发生的经济危机。印度尼西亚人民,特别是西苏门答腊省人民,直接感受到了这些问题的影响。本研究旨在通过开发一个基于深度学习(DL)方法的分析模型来预测和分类贫困状况。本研究中使用的方法包括K-Means方法、人工神经网络(ANN)和支持向量机(SVM)。分析模型将使用Pearson相关(PC)方法进行优化,以测量分析的准确性。可变指标使用人口(X1)、贫困率(X2)、收入(X3)和贫困百分比(X4)等参数。研究结果显示,预测和分类输出的有效性准确率为99.8%。基于这些结果,可以得出结论,所提出的DL分析模型可以提供一个更新的分析模型,该模型在执行预测和分类过程中非常有效。研究结果也有助于初步处理贫困问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1