Nihal D. Salman , György Pillinger , György Sitkei , Péter Kiss
{"title":"Load bearing capacity of finite half space agricultural homogeneous soil","authors":"Nihal D. Salman , György Pillinger , György Sitkei , Péter Kiss","doi":"10.1016/j.jterra.2023.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive plate-sinkage equation is necessary for the description of the load bearing capacity of soils. In the last century, several improvements to the existing equations were attempted but with limited success. The main aim of this paper is to verify, evaluate and develop a load bearing capacity theory of finite half space soil. Agricultural soils may be regarded as a finite half space in which the tilled soil layer is comparable to the loading diameter. Harder soil is found below the tilled soil layer and this hard soil can be considered as a rigid layer. A new consideration is the compacted cone-shaped zone developing under a loading device and its possible interaction with the rigid bottom surface. Theoretical and experimental investigations reported in this paper have shown that these approaches have facilitated deriving new relationships valid for finite half space. These include two independent variables and developing a dimensionless load bearing number. This paper introduces a new dimensionless plate-sinkage equation describing soil deformation in a general form.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000186","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive plate-sinkage equation is necessary for the description of the load bearing capacity of soils. In the last century, several improvements to the existing equations were attempted but with limited success. The main aim of this paper is to verify, evaluate and develop a load bearing capacity theory of finite half space soil. Agricultural soils may be regarded as a finite half space in which the tilled soil layer is comparable to the loading diameter. Harder soil is found below the tilled soil layer and this hard soil can be considered as a rigid layer. A new consideration is the compacted cone-shaped zone developing under a loading device and its possible interaction with the rigid bottom surface. Theoretical and experimental investigations reported in this paper have shown that these approaches have facilitated deriving new relationships valid for finite half space. These include two independent variables and developing a dimensionless load bearing number. This paper introduces a new dimensionless plate-sinkage equation describing soil deformation in a general form.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.