Early Prediction System for Employee Attrition Company “XYZ” Using Support Vector Machine Algorithm

Wikke Alvina Medyanti, M. Faisal
{"title":"Early Prediction System for Employee Attrition Company “XYZ” Using Support Vector Machine Algorithm","authors":"Wikke Alvina Medyanti, M. Faisal","doi":"10.24114/cess.v8i2.46494","DOIUrl":null,"url":null,"abstract":"Pergantian karyawan merupakan masalah yang signifikan bagi organisasi karena dapat berdampak negatif pada produktivitas dan kinerja. Dalam penelitian ini, dikembangkan sebuah model Support Vector Machine (SVM) untuk memprediksi pergantian karyawan berdasarkan dataset yang berisi berbagai atribut karyawan. Dataset tersebut telah melalui tahap pra-pemrosesan dengan melakukan pemetaan nilai-nilai kategorikal dan pengkodean one-hot. Fitur-fitur kemudian dibagi menjadi data latih dan data uji, serta dilakukan penskalaan menggunakan StandardScaler. Hasil penelitian menunjukkan bahwa model mencapai akurasi sebesar 88,4%. Presisi untuk karyawan yang tidak mengalami pergantian (non-attrition) tinggi, yaitu sebesar 89,3%, menunjukkan kemampuan model dalam mengidentifikasi dengan benar karyawan yang kemungkinan akan bertahan. Namun, presisi untuk karyawan yang mengalami pergantian (attrition) lebih rendah, sebesar 69,2%, mengindikasikan adanya ruang untuk perbaikan dalam mengidentifikasi karyawan yang berisiko mengalami pergantian. Recall untuk karyawan non-attrition mencapai 98,4%, menunjukkan kemampuan yang tinggi dalam mengklasifikasikan dengan benar, sedangkan recall untuk karyawan attrition sebesar 23,1%. Nilai F1-score juga mencerminkan kinerja yang lebih baik untuk karyawan non-attrition dibandingkan karyawan attrition. Secara keseluruhan, model SVM menunjukkan potensi dalam memprediksi pergantian karyawan, namun perlu dilakukan pengembangan lebih lanjut untuk meningkatkan identifikasi karyawan yang berisiko, sehingga memberikan wawasan berharga dalam pengambilan keputusan SDM dan strategi retensi.Employee attrition is a significant concern for organizations as it can have a negative impact on productivity and performance. In this study, a Support Vector Machine (SVM) model was developed to predict employee attrition based on a dataset containing various employee attributes. The dataset was preprocessed by mapping categorical values and performing one-hot encoding. The features were then split into training and testing sets, and scaled using the StandardScaler.The results showed that the model achieved an accuracy of 88.4%. The precision for non-attrition employees was high at 89.3%, indicating the model's ability to correctly identify employees who are likely to stay. However, the precision for attrition employees was lower at 69.2%, suggesting room for improvement in identifying employees at risk of attrition. The recall for non-attrition employees was 98.4%, indicating a high ability to correctly classify them, while the recall for attrition employees was 23.1%. The F1-score also reflected a better performance for non-attrition employees compared to attrition employees. Overall, the SVM model showed promise in predicting employee attrition, but further enhancements are needed to improve the identification of employees at risk, thus providing valuable insights for HR decision-making and retention strategies.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v8i2.46494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pergantian karyawan merupakan masalah yang signifikan bagi organisasi karena dapat berdampak negatif pada produktivitas dan kinerja. Dalam penelitian ini, dikembangkan sebuah model Support Vector Machine (SVM) untuk memprediksi pergantian karyawan berdasarkan dataset yang berisi berbagai atribut karyawan. Dataset tersebut telah melalui tahap pra-pemrosesan dengan melakukan pemetaan nilai-nilai kategorikal dan pengkodean one-hot. Fitur-fitur kemudian dibagi menjadi data latih dan data uji, serta dilakukan penskalaan menggunakan StandardScaler. Hasil penelitian menunjukkan bahwa model mencapai akurasi sebesar 88,4%. Presisi untuk karyawan yang tidak mengalami pergantian (non-attrition) tinggi, yaitu sebesar 89,3%, menunjukkan kemampuan model dalam mengidentifikasi dengan benar karyawan yang kemungkinan akan bertahan. Namun, presisi untuk karyawan yang mengalami pergantian (attrition) lebih rendah, sebesar 69,2%, mengindikasikan adanya ruang untuk perbaikan dalam mengidentifikasi karyawan yang berisiko mengalami pergantian. Recall untuk karyawan non-attrition mencapai 98,4%, menunjukkan kemampuan yang tinggi dalam mengklasifikasikan dengan benar, sedangkan recall untuk karyawan attrition sebesar 23,1%. Nilai F1-score juga mencerminkan kinerja yang lebih baik untuk karyawan non-attrition dibandingkan karyawan attrition. Secara keseluruhan, model SVM menunjukkan potensi dalam memprediksi pergantian karyawan, namun perlu dilakukan pengembangan lebih lanjut untuk meningkatkan identifikasi karyawan yang berisiko, sehingga memberikan wawasan berharga dalam pengambilan keputusan SDM dan strategi retensi.Employee attrition is a significant concern for organizations as it can have a negative impact on productivity and performance. In this study, a Support Vector Machine (SVM) model was developed to predict employee attrition based on a dataset containing various employee attributes. The dataset was preprocessed by mapping categorical values and performing one-hot encoding. The features were then split into training and testing sets, and scaled using the StandardScaler.The results showed that the model achieved an accuracy of 88.4%. The precision for non-attrition employees was high at 89.3%, indicating the model's ability to correctly identify employees who are likely to stay. However, the precision for attrition employees was lower at 69.2%, suggesting room for improvement in identifying employees at risk of attrition. The recall for non-attrition employees was 98.4%, indicating a high ability to correctly classify them, while the recall for attrition employees was 23.1%. The F1-score also reflected a better performance for non-attrition employees compared to attrition employees. Overall, the SVM model showed promise in predicting employee attrition, but further enhancements are needed to improve the identification of employees at risk, thus providing valuable insights for HR decision-making and retention strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机算法的XYZ公司员工流失早期预测系统
员工更换对组织来说是一个重大问题,因为它会对生产力和绩效产生负面影响。在本研究中,基于包含各种员工属性的数据集,开发了一个支持向量机(SVM)模型来预测员工替换。通过映射分类值并编码一个热点,数据集已经通过了预处理阶段。然后将特征划分为训练数据和测试数据,并使用StandardScaler进行缩放。研究表明,该模型的准确率达到88.4%。非自然减员员工的压力很大,即89.3%,这表明该模型能够正确识别有可能存活的员工。然而,替代工人的压力较低,为69.2%,这表明在识别有风险的替代工人方面还有改进的空间。非自然减员员工的召回率达到98.4%,显示出较高的正确分类能力,而自然减员的召回率为23.1%。F1分数也反映了非自然减员员工比自然减员人员表现更好。总体而言,SVM模型显示出预测员工流动的潜力,但还需要进一步的开发来改进对风险员工的识别,从而为SDM决策和保留策略提供有价值的见解。员工流失是组织关注的一个重要问题,因为它可能会对生产力和绩效产生负面影响。在本研究中,基于包含各种员工属性的数据集,开发了一个支持向量机(SVM)模型来预测员工流失。通过映射分类值并执行一次热编码对数据集进行预处理。然后将这些特征划分为训练集和测试集,并使用StandardScaler进行缩放。结果显示,该模型的准确率为88.4%。非自然减员员工的准确率高达89.3%,表明该模型能够正确识别可能留下来的员工。然而,自然减员员工的准确率较低,为69.2%,这表明在识别有自然减员风险的员工方面还有改进的空间。非自然减员员工的召回率为98.4%,表明他们有很高的正确分类能力,而自然减员的召回率则为23.1%。F1分数也反映出非自然减薪员工与自然减员相比表现更好。总体而言,支持向量机模型在预测员工流失方面显示出了前景,但还需要进一步增强,以改进对有风险员工的识别,从而为人力资源决策和保留策略提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
期刊最新文献
Implementation of the Multimedia Development Life Cycle in Making Educational Games About Indonesia Data Mining Algorithm Decision Tree Itterative Dechotomiser 3 (ID3) for Classification of Stroke Implementation of Weight Aggregated Sum Product Assessment (WASPAS) on the Selection of Online English Course Platforms Usability of Brain Tumor Detection Using the DNN (Deep Neural Network) Method Based on Medical Image on DICOM Performance Comparison Analysis of Multi Prime RSA and Multi Power RSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1