Bayesian Analysis of Strength Properties of Particleboard

IF 0.1 4区 农林科学 Q4 MATERIALS SCIENCE, PAPER & WOOD Mokuzai Gakkaishi Pub Date : 2019-04-25 DOI:10.2488/JWRS.65.93
H. Korai, Ken Watanabe
{"title":"Bayesian Analysis of Strength Properties of Particleboard","authors":"H. Korai, Ken Watanabe","doi":"10.2488/JWRS.65.93","DOIUrl":null,"url":null,"abstract":"Strength properties (modulus of rupture, internal bond strength, lateral nail resistance, and nail-head pull-through) of particleboard were measured, and were subjected to conventionally statistical and Bayesian analyses. All strength properties could be fitted to normal distributions. In conventionally statistical analysis, mean and variance are constant values that have one true value. Therefore, when mean and variance are distributed, probability distributions of strength properties could not be inferred suitably using conventionally statistical analysis. In Bayesian analysis, because mean and variance are considered to be distributed, their distributions could be used to infer probability distributions of strength properties. The mean and variance of products with large variance of strength properties, such as particleboards, are considered to be distributed. Thus, Bayesian analysis is useful in the quality control of particleboards.","PeriodicalId":49800,"journal":{"name":"Mokuzai Gakkaishi","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokuzai Gakkaishi","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2488/JWRS.65.93","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2

Abstract

Strength properties (modulus of rupture, internal bond strength, lateral nail resistance, and nail-head pull-through) of particleboard were measured, and were subjected to conventionally statistical and Bayesian analyses. All strength properties could be fitted to normal distributions. In conventionally statistical analysis, mean and variance are constant values that have one true value. Therefore, when mean and variance are distributed, probability distributions of strength properties could not be inferred suitably using conventionally statistical analysis. In Bayesian analysis, because mean and variance are considered to be distributed, their distributions could be used to infer probability distributions of strength properties. The mean and variance of products with large variance of strength properties, such as particleboards, are considered to be distributed. Thus, Bayesian analysis is useful in the quality control of particleboards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刨花板强度特性的贝叶斯分析
测量刨花板的强度特性(断裂模量、内部粘结强度、侧向抗钉性和钉头穿透性),并进行常规统计和贝叶斯分析。所有强度特性都可以拟合到正态分布。在传统的统计分析中,均值和方差是具有一个真值的常数值。因此,当平均值和方差分布时,不能使用传统的统计分析来适当地推断强度特性的概率分布。在贝叶斯分析中,由于均值和方差被认为是分布的,它们的分布可以用来推断强度特性的概率分布。强度特性变化较大的产品(如刨花板)的平均值和方差被认为是分布的。因此,贝叶斯分析在刨花板的质量控制中是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mokuzai Gakkaishi
Mokuzai Gakkaishi 工程技术-材料科学:纸与木材
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊最新文献
Effect of Differences in Wooden Floors on Human Physiology and Psychology during Walking II. 木琴音板の振動特性と里山広葉樹材での代替の検討 Influence of Friction Inhibition on Lateral Resistance of Timber Joints カラマツラミナの幅厚さ比とローリングシアー強度の関係 アセトアセチル化PVAとpMDIをブレンドしたガラス転移点の異なるアクリル樹脂エマルションのフィルム物性と木材接着性能
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1