{"title":"A fuzzy interval based multi-criteria homogeneous group decision making technique: An application to airports ranking problem","authors":"Bipradas Bairagi","doi":"10.31181/dmame622023410","DOIUrl":null,"url":null,"abstract":"This paper aims to develop and introduce a fuzzy Interval based Multi-criteria homogeneous Group Decision making technique (IMGD) to make appropriate decision under fuzzy environment. In fuzzy multi-criteria group decision making process, a group of decision makers often considers several subjective criteria for ranking a set of alternatives. Due to vague and imprecise information, decision makers generally utilize linguistic variables which are mandatorily converted into triangular or trapezoidal fuzzy numbers. The total process then becomes very complex and time consuming. The current investigation advocates fuzzy intervals instead of triangular or trapezoidal fuzzy numbers for simplification of the complex situation and ease of calculation. In this method, fuzzy intervals of performance ratings and weights assessed by homogeneous group decision makers under subjective criteria are converted into first mean fuzzy intervals then into normalized crisp numbers. The normalized crisp performance ratings and normalized crisp weights are combined together to determine initially individual contribution and then into aggregate contribution to each alternative for final ranking and selection of the alternative. The new model is demonstrated with an application to airports ranking and selection problem for better clarification and verification. The outcome of the proposed is validated with the results obtained by well-known existing MCDM techniques. The analysis shows that the proposed method is applicable, useful and effective for appropriate decision making under fuzzy MCDM environment.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame622023410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 5
Abstract
This paper aims to develop and introduce a fuzzy Interval based Multi-criteria homogeneous Group Decision making technique (IMGD) to make appropriate decision under fuzzy environment. In fuzzy multi-criteria group decision making process, a group of decision makers often considers several subjective criteria for ranking a set of alternatives. Due to vague and imprecise information, decision makers generally utilize linguistic variables which are mandatorily converted into triangular or trapezoidal fuzzy numbers. The total process then becomes very complex and time consuming. The current investigation advocates fuzzy intervals instead of triangular or trapezoidal fuzzy numbers for simplification of the complex situation and ease of calculation. In this method, fuzzy intervals of performance ratings and weights assessed by homogeneous group decision makers under subjective criteria are converted into first mean fuzzy intervals then into normalized crisp numbers. The normalized crisp performance ratings and normalized crisp weights are combined together to determine initially individual contribution and then into aggregate contribution to each alternative for final ranking and selection of the alternative. The new model is demonstrated with an application to airports ranking and selection problem for better clarification and verification. The outcome of the proposed is validated with the results obtained by well-known existing MCDM techniques. The analysis shows that the proposed method is applicable, useful and effective for appropriate decision making under fuzzy MCDM environment.