{"title":"An exact approach for the multi-constraint graph partitioning problem","authors":"Diego Recalde , Ramiro Torres , Polo Vaca","doi":"10.1007/s13675-020-00126-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a multi-constraint graph partitioning problem is introduced. The input is an undirected graph with costs on the edges and multiple weights on the nodes. The problem calls for a partition of the node set into a fixed number of clusters, such that each cluster satisfies a collection of node weight constraints, and the total cost of the edges whose end nodes are in the same cluster is minimized. It arises as a sub-problem of an integrated vehicle and pollster problem from a real-world application. Two integer programming formulations are provided, and several families of valid inequalities associated with the respective polyhedra are proved. An exact algorithm based on Branch & Bound and cutting planes is proposed, and it is tested on real-world instances.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"8 3","pages":"Pages 289-308"},"PeriodicalIF":2.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13675-020-00126-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440621001313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
In this work, a multi-constraint graph partitioning problem is introduced. The input is an undirected graph with costs on the edges and multiple weights on the nodes. The problem calls for a partition of the node set into a fixed number of clusters, such that each cluster satisfies a collection of node weight constraints, and the total cost of the edges whose end nodes are in the same cluster is minimized. It arises as a sub-problem of an integrated vehicle and pollster problem from a real-world application. Two integer programming formulations are provided, and several families of valid inequalities associated with the respective polyhedra are proved. An exact algorithm based on Branch & Bound and cutting planes is proposed, and it is tested on real-world instances.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.