Contagion, Confounding, and Causality: Confronting the Three C’s of Observational Political Networks Research

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE Political Analysis Pub Date : 2023-01-09 DOI:10.1017/pan.2022.35
Medha Uppala, B. Desmarais
{"title":"Contagion, Confounding, and Causality: Confronting the Three C’s of Observational Political Networks Research","authors":"Medha Uppala, B. Desmarais","doi":"10.1017/pan.2022.35","DOIUrl":null,"url":null,"abstract":"Abstract Contagion across various types of connections is a central process in the study of many political phenomena (e.g., democratization, civil conflict, and voter turnout). Over the last decade, the methodological literature addressing the challenges in causally identifying contagion in networks has exploded. In one of the foundational works in this literature, Shalizi and Thomas (2011, Sociological Methods and Research 40, 211–239.) propose a permutation test for contagion in longitudinal network data that is not confounded by selection (e.g., homophily). We illustrate the properties of this test via simulation. We assess its statistical power under various conditions of the data, including the nature of the contagion, the structure of the network through which contagion occurs, and the number of time periods included in the data. We then apply this test to an example domain that is commonly considered in the context of observational research on contagion—the international spread of democracy. We find evidence of international contagion of democracy. We conclude with a discussion of the practical applicability of the Shalizi and Thomas test to the study of contagion in political networks.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"472 - 479"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2022.35","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Contagion across various types of connections is a central process in the study of many political phenomena (e.g., democratization, civil conflict, and voter turnout). Over the last decade, the methodological literature addressing the challenges in causally identifying contagion in networks has exploded. In one of the foundational works in this literature, Shalizi and Thomas (2011, Sociological Methods and Research 40, 211–239.) propose a permutation test for contagion in longitudinal network data that is not confounded by selection (e.g., homophily). We illustrate the properties of this test via simulation. We assess its statistical power under various conditions of the data, including the nature of the contagion, the structure of the network through which contagion occurs, and the number of time periods included in the data. We then apply this test to an example domain that is commonly considered in the context of observational research on contagion—the international spread of democracy. We find evidence of international contagion of democracy. We conclude with a discussion of the practical applicability of the Shalizi and Thomas test to the study of contagion in political networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传染、困惑与因果:直面观察政治网络研究的三个C
摘要跨越各种类型的联系的传染是研究许多政治现象(如民主化、国内冲突和选民投票率)的核心过程。在过去的十年里,解决网络传染病因果识别挑战的方法论文献激增。在这篇文献的基础著作之一中,Shalizi和Thomas(2011,社会学方法和研究40211-239。)提出了一种纵向网络数据传染的排列测试,该测试不受选择(例如,同质性)的干扰。我们通过仿真说明了该测试的特性。我们在各种数据条件下评估其统计能力,包括传染的性质、传染发生的网络结构以及数据中包含的时间段数量。然后,我们将这一测试应用于一个通常在传染病观察研究中考虑的示例领域——民主的国际传播。我们发现了民主在国际上蔓延的证据。最后,我们讨论了Shalizi和Thomas检验在政治网络传染研究中的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
期刊最新文献
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study. On Finetuning Large Language Models Explaining Recruitment to Extremism: A Bayesian Hierarchical Case–Control Approach Implementation Matters: Evaluating the Proportional Hazard Test’s Performance Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1