{"title":"Mechanical and tribological properties of C/C–SiC ceramic composites with different preforms","authors":"Yuqing Peng, Zhiwei Li, Aijun Li, Qifan Wang, R. Bai, Fangzhou Zhang","doi":"10.1515/secm-2022-0205","DOIUrl":null,"url":null,"abstract":"Abstract The C/C–SiC composites were fabricated by the liquid silicon infiltration method. The mechanical and tribological properties of C/C–SiC composites were assessed and compared based on different C/C densities and the carbon fiber textile architecture. The results demonstrated that the bending and shear strengths of C/C–SiC were lower than those of C/C composites, which resulted from the carbon fibers being corroded during the process of infiltration of liquid silicon. In contrast to C/C composites, the compressive strength of C/C–SiC exhibited higher values due to the presence of SiC ceramics. Moreover, the mechanical strength of C/C composites increased gradually with the increase of the C/C preform density. The tribological properties of various C/C–SiC composites showed a stable friction phase at an intermediate braking stage. When the density of C/C preforms was around 1.78 g/cm3, the C/C–SiC composites exhibited excellent friction coefficients (0.438 and 0.465), and low wear rates (linear and weight wear rates were 0.450 µm/time and 0.123 g/cycle, respectively). Furthermore, the C/C–SiC composites fabricated with non-woven carbon fiber needling preforms showed relatively a higher friction value and wear rate than those of C/C–SiC with PANOF integral C/C preforms. Therefore, C/C–SiC composites have been considered promising friction materials for braking system applications.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0205","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The C/C–SiC composites were fabricated by the liquid silicon infiltration method. The mechanical and tribological properties of C/C–SiC composites were assessed and compared based on different C/C densities and the carbon fiber textile architecture. The results demonstrated that the bending and shear strengths of C/C–SiC were lower than those of C/C composites, which resulted from the carbon fibers being corroded during the process of infiltration of liquid silicon. In contrast to C/C composites, the compressive strength of C/C–SiC exhibited higher values due to the presence of SiC ceramics. Moreover, the mechanical strength of C/C composites increased gradually with the increase of the C/C preform density. The tribological properties of various C/C–SiC composites showed a stable friction phase at an intermediate braking stage. When the density of C/C preforms was around 1.78 g/cm3, the C/C–SiC composites exhibited excellent friction coefficients (0.438 and 0.465), and low wear rates (linear and weight wear rates were 0.450 µm/time and 0.123 g/cycle, respectively). Furthermore, the C/C–SiC composites fabricated with non-woven carbon fiber needling preforms showed relatively a higher friction value and wear rate than those of C/C–SiC with PANOF integral C/C preforms. Therefore, C/C–SiC composites have been considered promising friction materials for braking system applications.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.