{"title":"Low salinity water and polymer flooding in sandstone reservoirs: Upscaling from nano-to macro-scale using the maximum energy barrier","authors":"Prashant Jadhawar, Motaz Saeed","doi":"10.1016/j.petrol.2022.111247","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the flooding processes of low salinity waterflooding and low salinity polymer flooding (LSWF and LSP) in sandstone reservoirs were mechanistically modelled at nano-and macro-scales. Triple-layer surface complexation models were utilised to simulate interactions at the oil-brine and sandstone-brine interfaces. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was applied to describe the stability of interfacial films in crude oil-brine-sandstone rock systems. The novel application of the maximum energy barrier (MEB), calculated from the interaction potential of the DLVO theory, as an upscaling and interpolant parameter to adjust relative permeability curves as a function of reservoir properties is proposed in this work. Numerical simulations using the commercial simulator CMG-STARS were used in tandem with the surface complexation models and film analysis to evaluate the performance of LSWF and LSP in sandstone reservoirs.</p><p>Results of the numerical simulations showed that the LSP gave significantly higher oil recovery compared to standard polymer flooding because of its utilisation of wettability alteration due to LSWF and the improved mobility control due to LSP. A comparison between studied injection processes i.e. low and high salinity waterflooding, and low and high salinity polymer flooding, revealed that oil recovery as a result of wettability alteration is significantly higher than that of mobility control. Further analysis indicated that temperature affects the wettability alteration favourably, and the polymer slug viscosity unfavourably. However, the temperature effect on the wettability was found to be more pronounced. The workflow presented in this study provides valuable guidelines in screening the appropriate sandstone reservoirs for LSWF and LSP applications using the numerical simulation techniques through the upscaling from nano-to-macro-to-field scale.</p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111247"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010993","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 6
Abstract
In this work, the flooding processes of low salinity waterflooding and low salinity polymer flooding (LSWF and LSP) in sandstone reservoirs were mechanistically modelled at nano-and macro-scales. Triple-layer surface complexation models were utilised to simulate interactions at the oil-brine and sandstone-brine interfaces. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was applied to describe the stability of interfacial films in crude oil-brine-sandstone rock systems. The novel application of the maximum energy barrier (MEB), calculated from the interaction potential of the DLVO theory, as an upscaling and interpolant parameter to adjust relative permeability curves as a function of reservoir properties is proposed in this work. Numerical simulations using the commercial simulator CMG-STARS were used in tandem with the surface complexation models and film analysis to evaluate the performance of LSWF and LSP in sandstone reservoirs.
Results of the numerical simulations showed that the LSP gave significantly higher oil recovery compared to standard polymer flooding because of its utilisation of wettability alteration due to LSWF and the improved mobility control due to LSP. A comparison between studied injection processes i.e. low and high salinity waterflooding, and low and high salinity polymer flooding, revealed that oil recovery as a result of wettability alteration is significantly higher than that of mobility control. Further analysis indicated that temperature affects the wettability alteration favourably, and the polymer slug viscosity unfavourably. However, the temperature effect on the wettability was found to be more pronounced. The workflow presented in this study provides valuable guidelines in screening the appropriate sandstone reservoirs for LSWF and LSP applications using the numerical simulation techniques through the upscaling from nano-to-macro-to-field scale.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.