Surface morphology engineering of metal oxide-transition metal dichalcogenide heterojunction

IF 2.2 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Asian Ceramic Societies Pub Date : 2022-09-05 DOI:10.1080/21870764.2022.2117892
Chang-Hwan Oh, R. S. Babu, Seung-il Kim, Dong-Park Lee, Gyuhyeon Sim, Do-Hyeon Lee, Yeonjin Je, Kim Chan Hwi, W. Jeong, G. Ryu, Jun Young Kim, S. Nam, Jae Hyun Lee, Jun‐Hong Park
{"title":"Surface morphology engineering of metal oxide-transition metal dichalcogenide heterojunction","authors":"Chang-Hwan Oh, R. S. Babu, Seung-il Kim, Dong-Park Lee, Gyuhyeon Sim, Do-Hyeon Lee, Yeonjin Je, Kim Chan Hwi, W. Jeong, G. Ryu, Jun Young Kim, S. Nam, Jae Hyun Lee, Jun‐Hong Park","doi":"10.1080/21870764.2022.2117892","DOIUrl":null,"url":null,"abstract":"ABSTRACT A tremendous effort has been made to develop 2D materials-based FETs for electronic applications due to their atomically thin structures. Typically, the electrical performance of the device can vary with the surface roughness and thickness of the channel layer. Therefore, a two-step surface engineering process is demonstrated to tailor the surface roughness and thickness of MoSe2 multilayers involving exposure of O2 plasma followed by dipping in (NH4)2S(aq) solution. The O2 plasma treatment generated an amorphous MoOx layer to form a MoOx/MoSe2 heterojunction, and the (NH4)2S(aq) treatment tailored the surface roughness of the heterojunction. The ON/OFF current ratio of MoSe2 FET is about 1.1 × 105 and 5.7 × 104 for bare and chemically etched MoSe2, respectively. The surface roughness of the chemically treated MoSe2 is higher than that of the bare, 4.2 ± 0.5 nm against 3.6 ± 0.5 nm. Conversely, a 1-hour exposure of the multilayer MoOx/MoSe2 heterostructure with the (NH4)2S(aq) solution removed the amorphous oxide layer and scaled down the thickness of MoSe2 from ~92.2 nm to ~38.9 nm. The preliminary study shows that this simple two-step strategy can obtain a higher surface-area-to-volume ratio and thickness engineering with acceptable variation in electrical properties.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2022.2117892","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT A tremendous effort has been made to develop 2D materials-based FETs for electronic applications due to their atomically thin structures. Typically, the electrical performance of the device can vary with the surface roughness and thickness of the channel layer. Therefore, a two-step surface engineering process is demonstrated to tailor the surface roughness and thickness of MoSe2 multilayers involving exposure of O2 plasma followed by dipping in (NH4)2S(aq) solution. The O2 plasma treatment generated an amorphous MoOx layer to form a MoOx/MoSe2 heterojunction, and the (NH4)2S(aq) treatment tailored the surface roughness of the heterojunction. The ON/OFF current ratio of MoSe2 FET is about 1.1 × 105 and 5.7 × 104 for bare and chemically etched MoSe2, respectively. The surface roughness of the chemically treated MoSe2 is higher than that of the bare, 4.2 ± 0.5 nm against 3.6 ± 0.5 nm. Conversely, a 1-hour exposure of the multilayer MoOx/MoSe2 heterostructure with the (NH4)2S(aq) solution removed the amorphous oxide layer and scaled down the thickness of MoSe2 from ~92.2 nm to ~38.9 nm. The preliminary study shows that this simple two-step strategy can obtain a higher surface-area-to-volume ratio and thickness engineering with acceptable variation in electrical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属氧化物-过渡金属二硫族化合物异质结的表面形态工程
摘要:由于其原子级薄的结构,开发用于电子应用的基于2D材料的FET已经付出了巨大的努力。通常,器件的电性能可以随着沟道层的表面粗糙度和厚度而变化。因此,证明了一种两步表面工程工艺来调整MoSe2多层膜的表面粗糙度和厚度,包括暴露O2等离子体,然后浸入(NH4)2S(aq)溶液。O2等离子体处理产生无定形MoOx层以形成MoOx/MoSe2异质结,并且(NH4)2S(aq)处理定制异质结的表面粗糙度。对于裸露的和化学蚀刻的MoSe2,MoSe2 FET的导通/截止电流比分别约为1.1×105和5.7×104。化学处理的MoSe2的表面粗糙度高于裸的,分别为4.2±0.5 nm和3.6±0.5 nm。相反,多层MoOx/MoSe2异质结构与(NH4)2S(aq)溶液的1小时暴露去除了非晶氧化物层,并将MoSe2的厚度从~92.2nm缩小到~38.9nm。初步研究表明,这种简单的两步策略可以在电学性能变化可接受的情况下获得更高的表面积体积比和厚度工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Asian Ceramic Societies
Journal of Asian Ceramic Societies Materials Science-Ceramics and Composites
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
10 weeks
期刊介绍: The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.
期刊最新文献
Structural evolution, ferroelectric phase transitions, and dielectric behavior of Sn-doped Ba 0.95 Sr 0.05 TiO 3 ferroelectric ceramics Modeling and preparation of additive-manufactured laser ceramics Effect of yttrium oxide addition on the microstructure and mechanical properties of WC–ni composites fabricated from recycled WC and Ni Preparation of high-entropy nitride ceramics (TiVCrNbZr1-x)Ny by introducing nitrogen vacancies Loading of antibiotic molecules into organically modified layered calcium silicate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1