Jianguo Liu , Jiangmin Sun , Thishana Singh , Shanshan Lin , Longlong Ma
{"title":"Facile synthesis of N-doped graphene encapsulated Ni@N/C catalyst and its catalysis for highly selective semi-hydrogenation of alkynes","authors":"Jianguo Liu , Jiangmin Sun , Thishana Singh , Shanshan Lin , Longlong Ma","doi":"10.1016/j.gce.2022.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Although precious transition metals such as palladium, platinum, and iridium are widely used in hydrogenation reactions, the earth-abundant transition metal-catalyzed highly selective semi-hydrogenation of terminal alkynes to terminal alkenes remains poorly developed and a challenge. Herein we demonstrate the excellent selective, cost-effective semi-hydrogenation of terminal alkynes <em>via</em> a novel graphene encapsulated Ni@N/C catalyst. The graphene layer encapsulated nano-catalyst Ni@N/C could significantly avoid metal leaching and improve the stability of the catalyst. The strong interaction of nitrogen with the Ni nanoparticles regulates the activity of Ni towards selective semi-hydrogenation of terminal alkynes. Substrates having un-functionalized as well as functionalized substituents, and substrates having sensitive functional groups (olefins, ketones) which pose a challenge to hydrogenate, were semi-hydrogenated with excellent conversion (up to 99%) and selectivity (up to 99%) under optimized reaction conditions.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"3 4","pages":"Pages 395-404"},"PeriodicalIF":9.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952822000115/pdfft?md5=bc271c94a8928d698ea05ca9484141d0&pid=1-s2.0-S2666952822000115-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952822000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Although precious transition metals such as palladium, platinum, and iridium are widely used in hydrogenation reactions, the earth-abundant transition metal-catalyzed highly selective semi-hydrogenation of terminal alkynes to terminal alkenes remains poorly developed and a challenge. Herein we demonstrate the excellent selective, cost-effective semi-hydrogenation of terminal alkynes via a novel graphene encapsulated Ni@N/C catalyst. The graphene layer encapsulated nano-catalyst Ni@N/C could significantly avoid metal leaching and improve the stability of the catalyst. The strong interaction of nitrogen with the Ni nanoparticles regulates the activity of Ni towards selective semi-hydrogenation of terminal alkynes. Substrates having un-functionalized as well as functionalized substituents, and substrates having sensitive functional groups (olefins, ketones) which pose a challenge to hydrogenate, were semi-hydrogenated with excellent conversion (up to 99%) and selectivity (up to 99%) under optimized reaction conditions.