A. Bieliatynskyi, Shilin Yang, V. Pershakov, M. Shao, M. Ta
{"title":"Study of carbon nano-modifier of fly ash in cement concrete mixtures of civil engineering","authors":"A. Bieliatynskyi, Shilin Yang, V. Pershakov, M. Shao, M. Ta","doi":"10.1515/secm-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract Modern materials science has faced the problem of reducing the cost of raw materials and labor costs while obtaining basic construction materials (cement concrete) with increased performance properties. The article aims to substantiate the use of carbon nanotubes of fly ash as a cement concrete modifier to be reasonable for solving the above problem. Experimental studies are carried out using standard and special methods. The technological properties of cement concrete mixtures are determined in accordance with the European and American standards. The study investigates the impact of carbon nanotubes of fly ash on the structure and properties of the mineral Portland cement binder. The article provides the examination of structural and rheological characteristics of nano-modified cement concrete mixtures. The effect of a carbon nano-modifier on the strength, deformation, and performance properties of cement concrete mixtures is defined. As a result, the optimal composition of nano-modified cement concrete mixture has been developed that meets the criteria of concrete compressive strength and flowability. Positive research results allow determining the areas of application of the obtained compositions in civil engineering.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0018","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Modern materials science has faced the problem of reducing the cost of raw materials and labor costs while obtaining basic construction materials (cement concrete) with increased performance properties. The article aims to substantiate the use of carbon nanotubes of fly ash as a cement concrete modifier to be reasonable for solving the above problem. Experimental studies are carried out using standard and special methods. The technological properties of cement concrete mixtures are determined in accordance with the European and American standards. The study investigates the impact of carbon nanotubes of fly ash on the structure and properties of the mineral Portland cement binder. The article provides the examination of structural and rheological characteristics of nano-modified cement concrete mixtures. The effect of a carbon nano-modifier on the strength, deformation, and performance properties of cement concrete mixtures is defined. As a result, the optimal composition of nano-modified cement concrete mixture has been developed that meets the criteria of concrete compressive strength and flowability. Positive research results allow determining the areas of application of the obtained compositions in civil engineering.
期刊介绍:
Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.