Resonance frequency of an orthotropic layer to non-principal vertically incident SH body and surface waves

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Seismology Pub Date : 2023-07-24 DOI:10.1007/s10950-023-10152-w
Truong Thi Thuy Dung, Pham Chi Vinh, Abdelkrim Aoudia, Tran Thanh Tuan
{"title":"Resonance frequency of an orthotropic layer to non-principal vertically incident SH body and surface waves","authors":"Truong Thi Thuy Dung,&nbsp;Pham Chi Vinh,&nbsp;Abdelkrim Aoudia,&nbsp;Tran Thanh Tuan","doi":"10.1007/s10950-023-10152-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, non-principal waves propagating in an isotropic elastic half-space covered by an orthotropic layer are examined. The main objective is to establish a formula for the SH transfer function induced by an vertically incident SH wave and a formula for the H/V ratio of surface waves. The peak frequencies of both the SH transfer function and the H/V ratio curve are examined for models with low to high impedance contrasts to verify the applicability of the quarter wave-length rule for both SH body waves and surface waves. It is numerically shown that the quarter wave-length rule applies well for non-principal SH body wave. Non principal surface waves are shown to be a composition of Love and Rayleigh waves, and their peaks follow the quarter wave-length rule only in the case of high impedance contrast. For medium or low impedance contrasts, the peak frequencies of surface waves could differ from the peak frequencies of SH body wave with relative differences up to <span>\\(50\\%\\)</span>.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-023-10152-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10152-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, non-principal waves propagating in an isotropic elastic half-space covered by an orthotropic layer are examined. The main objective is to establish a formula for the SH transfer function induced by an vertically incident SH wave and a formula for the H/V ratio of surface waves. The peak frequencies of both the SH transfer function and the H/V ratio curve are examined for models with low to high impedance contrasts to verify the applicability of the quarter wave-length rule for both SH body waves and surface waves. It is numerically shown that the quarter wave-length rule applies well for non-principal SH body wave. Non principal surface waves are shown to be a composition of Love and Rayleigh waves, and their peaks follow the quarter wave-length rule only in the case of high impedance contrast. For medium or low impedance contrasts, the peak frequencies of surface waves could differ from the peak frequencies of SH body wave with relative differences up to \(50\%\).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正交各向异性层对非主垂直入射SH体和表面波的共振频率
在本研究中,非主波在由正交各向异性层覆盖的各向同性弹性半空间中传播。主要目的是建立垂直入射SH波诱导SH传递函数的公式和表面波的H/V比的公式。研究了低阻抗和高阻抗模型的SH传递函数和H/V比曲线的峰值频率,以验证四分之一波长规则对SH体波和表面波的适用性。数值计算表明,四分之一波长规律适用于非主SH体波。非主表面波是洛夫波和瑞利波的组合,只有在高阻抗对比的情况下,它们的峰值才遵循四分之一波长规则。对于中、低阻抗对比,表面波的峰值频率与SH体波的峰值频率可能存在差异,相对差异可达\(50\%\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
期刊最新文献
Source parameters of the May 28, 2016, Mihoub earthquake (Mw 5.4, Algeria) deduced from Bayesian modelling of Sentinel-1 SAR data Fault imaging using earthquake sequences: a revised seismotectonic model for the Albstadt Shear Zone, Southwest Germany A logic-tree based probabilistic seismic hazard assessment for the central ionian islands of cephalonia and ithaca (Western Greece) Developing machine learning-based ground motion models to predict peak ground velocity in Turkiye Fault structures of the Haichenghe fault zone in Liaoning, China from high-precision location based on dense array observation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1