Forecasting Models Based on Fuzzy Logic: An Application on International Coffee Prices

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2022-12-01 DOI:10.15611/eada.2022.4.01
Fatih Chellai
{"title":"Forecasting Models Based on Fuzzy Logic: An Application on International Coffee Prices","authors":"Fatih Chellai","doi":"10.15611/eada.2022.4.01","DOIUrl":null,"url":null,"abstract":"Abstract In recent decades, Fuzzy Time Series (FTS) has become a competitive, sometimes complementary, approach to classical time series methods such as that of Box-Jenkins. This study has two different purposes: a theoretical purpose, presenting an overview of the fuzzy logic and fuzzy time series models, and a practical purpose, which is to estimate and forecast monthly international coffee prices during the period 2000-2022. Analysing and forecasting the dynamics of coffee prices is of great interest to producers, consumers, and other market actors in managing and making rational decisions. The findings showed that international coffee prices exhibited significant fluctuations, with large increases and decreases influenced mainly by the level of top-ranked producers. The forecasted results revealed that a decrease in prices during the next six months (Jan 2023 to June 2023) is expected. Based on the results, it is also clear that the FTS models are more flexible and can be applied in forecasting time-series variables. At the same time, volatility and, sometimes, the unexpected swingsin coffee prices continue to draw more criticism and raise different issues regarding the roles of the markets and countries in ensuring food security.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"26 1","pages":"1 - 16"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15611/eada.2022.4.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In recent decades, Fuzzy Time Series (FTS) has become a competitive, sometimes complementary, approach to classical time series methods such as that of Box-Jenkins. This study has two different purposes: a theoretical purpose, presenting an overview of the fuzzy logic and fuzzy time series models, and a practical purpose, which is to estimate and forecast monthly international coffee prices during the period 2000-2022. Analysing and forecasting the dynamics of coffee prices is of great interest to producers, consumers, and other market actors in managing and making rational decisions. The findings showed that international coffee prices exhibited significant fluctuations, with large increases and decreases influenced mainly by the level of top-ranked producers. The forecasted results revealed that a decrease in prices during the next six months (Jan 2023 to June 2023) is expected. Based on the results, it is also clear that the FTS models are more flexible and can be applied in forecasting time-series variables. At the same time, volatility and, sometimes, the unexpected swingsin coffee prices continue to draw more criticism and raise different issues regarding the roles of the markets and countries in ensuring food security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑的预测模型在国际咖啡价格预测中的应用
摘要近几十年来,模糊时间序列(FTS)已成为经典时间序列方法(如Box-Jenkins方法)的一种竞争性方法,有时是互补性方法。本研究有两个不同的目的:一个是理论目的,概述模糊逻辑和模糊时间序列模型;另一个是实践目的,估计和预测2000-2022年期间的月度国际咖啡价格。分析和预测咖啡价格的动态对生产商、消费者和其他市场参与者管理和做出合理决策非常感兴趣。研究结果表明,国际咖啡价格出现了显著波动,大幅上涨和下跌主要受顶级咖啡生产商水平的影响。预测结果显示,预计未来六个月(2023年1月至2023年6月)价格将下降。基于这些结果,也清楚地表明,FTS模型更灵活,可以应用于时间序列变量的预测。与此同时,咖啡价格的波动,有时甚至是出乎意料的波动,继续引起更多的批评,并就市场和国家在确保粮食安全方面的作用提出了不同的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1