Shouvik Saha, Amita Mondal, Mayur B. Kurade, Yongtae Ahn, Priyabrata Banerjee, Hyun-Kyung Park, Ashok Pandey, Tae Hyun Kim, Byong-Hun Jeon
{"title":"Cutting-edge technological advancements in biomass-derived hydrogen production","authors":"Shouvik Saha, Amita Mondal, Mayur B. Kurade, Yongtae Ahn, Priyabrata Banerjee, Hyun-Kyung Park, Ashok Pandey, Tae Hyun Kim, Byong-Hun Jeon","doi":"10.1007/s11157-023-09648-1","DOIUrl":null,"url":null,"abstract":"<div><p>Production of hydrogen as carbon-free energy from renewable organic waste biomasses has been adopted for the long-term sustainability of a circular economy through various chemical and biological conversion processes. Conversion of waste biomasses to hydrogen provides dual benefits of low-cost energy-dense biofuel production and simultaneous waste reduction in eco-friendly valorization. Advancements in existing chemical and biological processes through light-induced photoreformation and microbial syntrophy-mediated metabolic induction in fermentation, respectively, facilitated holistic conversion of biowaste for maximum recovery of hydrogen by minimizing by-product generation. This review focuses on various thermochemical, photocatalytic reformation, and biological processes involving direct or indirect conversion of solid organic biomasses to hydrogen and their possible technological advancements to generate waste-to-value-added products. The techno-economic assessment describes the feasibility of waste biomass-derived hydrogen production over other technologies for industrial implementation.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"22 2","pages":"397 - 426"},"PeriodicalIF":8.6000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-023-09648-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-023-09648-1","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Production of hydrogen as carbon-free energy from renewable organic waste biomasses has been adopted for the long-term sustainability of a circular economy through various chemical and biological conversion processes. Conversion of waste biomasses to hydrogen provides dual benefits of low-cost energy-dense biofuel production and simultaneous waste reduction in eco-friendly valorization. Advancements in existing chemical and biological processes through light-induced photoreformation and microbial syntrophy-mediated metabolic induction in fermentation, respectively, facilitated holistic conversion of biowaste for maximum recovery of hydrogen by minimizing by-product generation. This review focuses on various thermochemical, photocatalytic reformation, and biological processes involving direct or indirect conversion of solid organic biomasses to hydrogen and their possible technological advancements to generate waste-to-value-added products. The techno-economic assessment describes the feasibility of waste biomass-derived hydrogen production over other technologies for industrial implementation.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.