Cutting-edge technological advancements in biomass-derived hydrogen production

IF 8.6 1区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Reviews in Environmental Science and Bio/Technology Pub Date : 2023-02-24 DOI:10.1007/s11157-023-09648-1
Shouvik Saha, Amita Mondal, Mayur B. Kurade, Yongtae Ahn, Priyabrata Banerjee, Hyun-Kyung Park, Ashok Pandey, Tae Hyun Kim, Byong-Hun Jeon
{"title":"Cutting-edge technological advancements in biomass-derived hydrogen production","authors":"Shouvik Saha,&nbsp;Amita Mondal,&nbsp;Mayur B. Kurade,&nbsp;Yongtae Ahn,&nbsp;Priyabrata Banerjee,&nbsp;Hyun-Kyung Park,&nbsp;Ashok Pandey,&nbsp;Tae Hyun Kim,&nbsp;Byong-Hun Jeon","doi":"10.1007/s11157-023-09648-1","DOIUrl":null,"url":null,"abstract":"<div><p>Production of hydrogen as carbon-free energy from renewable organic waste biomasses has been adopted for the long-term sustainability of a circular economy through various chemical and biological conversion processes. Conversion of waste biomasses to hydrogen provides dual benefits of low-cost energy-dense biofuel production and simultaneous waste reduction in eco-friendly valorization. Advancements in existing chemical and biological processes through light-induced photoreformation and microbial syntrophy-mediated metabolic induction in fermentation, respectively, facilitated holistic conversion of biowaste for maximum recovery of hydrogen by minimizing by-product generation. This review focuses on various thermochemical, photocatalytic reformation, and biological processes involving direct or indirect conversion of solid organic biomasses to hydrogen and their possible technological advancements to generate waste-to-value-added products. The techno-economic assessment describes the feasibility of waste biomass-derived hydrogen production over other technologies for industrial implementation.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"22 2","pages":"397 - 426"},"PeriodicalIF":8.6000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-023-09648-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-023-09648-1","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Production of hydrogen as carbon-free energy from renewable organic waste biomasses has been adopted for the long-term sustainability of a circular economy through various chemical and biological conversion processes. Conversion of waste biomasses to hydrogen provides dual benefits of low-cost energy-dense biofuel production and simultaneous waste reduction in eco-friendly valorization. Advancements in existing chemical and biological processes through light-induced photoreformation and microbial syntrophy-mediated metabolic induction in fermentation, respectively, facilitated holistic conversion of biowaste for maximum recovery of hydrogen by minimizing by-product generation. This review focuses on various thermochemical, photocatalytic reformation, and biological processes involving direct or indirect conversion of solid organic biomasses to hydrogen and their possible technological advancements to generate waste-to-value-added products. The techno-economic assessment describes the feasibility of waste biomass-derived hydrogen production over other technologies for industrial implementation.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物质制氢的尖端技术进步
通过各种化学和生物转化过程,从可再生有机废物生物质中生产氢作为无碳能源已被采用,以实现循环经济的长期可持续性。将废弃生物质转化为氢气提供了低成本高能量密度生物燃料生产和同时减少生态友好型增值废物的双重好处。现有化学和生物工艺的进步,分别通过光诱导光转化和微生物共生介导的发酵代谢诱导,促进了生物废物的整体转化,通过减少副产物的产生,最大限度地回收氢。本文综述了固体有机生物质直接或间接转化为氢的各种热化学、光催化重整和生物过程及其可能的技术进展,以产生废物到增值产品。技术经济评估描述了与其他工业实施技术相比,废生物质衍生制氢的可行性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Environmental Science and Bio/Technology
Reviews in Environmental Science and Bio/Technology Environmental Science-Waste Management and Disposal
CiteScore
25.00
自引率
1.40%
发文量
37
审稿时长
4.5 months
期刊介绍: Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.
期刊最新文献
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—a critical review Chemical interactions under the bark: bark-, ambrosia-, and wood-boring beetles and their microbial associates Biochar: a potential and green adsorbent for antibiotics removal from aqueous solution Unveiling the evolution of anaerobic membrane bioreactors: applications, fouling issues, and future perspective in wastewater treatment Correction to: Harnessing green tide Ulva biomass for carbon dioxide sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1