Imaging skins: stretchable and conformable on-organ beta particle detectors for radioguided surgery

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2023-07-01 DOI:10.1088/2516-1091/acdc70
S. Dietsch, L. Lindenroth, A. Stilli, D. Stoyanov
{"title":"Imaging skins: stretchable and conformable on-organ beta particle detectors for radioguided surgery","authors":"S. Dietsch, L. Lindenroth, A. Stilli, D. Stoyanov","doi":"10.1088/2516-1091/acdc70","DOIUrl":null,"url":null,"abstract":"While radioguided surgery (RGS) traditionally relied on detecting gamma rays, direct detection of beta particles could facilitate the detection of tumour margins intraoperatively by reducing radiation noise emanating from distant organs, thereby improving the signal-to-noise ratio of the imaging technique. In addition, most existing beta detectors do not offer surface sensing or imaging capabilities. Therefore, we explore the concept of a stretchable scintillator to detect beta-particles emitting radiotracers that would be directly deployed on the targeted organ. Such detectors, which we refer to as imaging skins, would work as indirect radiation detectors made of light-emitting agents and biocompatible stretchable material. Our vision is to detect scintillation using standard endoscopes routinely employed in minimally invasive surgery. Moreover, surgical robotic systems would ideally be used to apply the imaging skins, allowing for precise control of each component, thereby improving positioning and task repeatability. While still in the exploratory stages, this innovative approach has the potential to improve the detection of tumour margins during RGS by enabling real-time imaging, ultimately improving surgical outcomes.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/acdc70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

While radioguided surgery (RGS) traditionally relied on detecting gamma rays, direct detection of beta particles could facilitate the detection of tumour margins intraoperatively by reducing radiation noise emanating from distant organs, thereby improving the signal-to-noise ratio of the imaging technique. In addition, most existing beta detectors do not offer surface sensing or imaging capabilities. Therefore, we explore the concept of a stretchable scintillator to detect beta-particles emitting radiotracers that would be directly deployed on the targeted organ. Such detectors, which we refer to as imaging skins, would work as indirect radiation detectors made of light-emitting agents and biocompatible stretchable material. Our vision is to detect scintillation using standard endoscopes routinely employed in minimally invasive surgery. Moreover, surgical robotic systems would ideally be used to apply the imaging skins, allowing for precise control of each component, thereby improving positioning and task repeatability. While still in the exploratory stages, this innovative approach has the potential to improve the detection of tumour margins during RGS by enabling real-time imaging, ultimately improving surgical outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤成像:可拉伸且可在器官β粒子探测器上适形,用于放射引导手术
虽然放射引导手术(RGS)传统上依赖于检测伽马射线,但直接检测β粒子可以通过减少来自远处器官的辐射噪声来促进术中肿瘤边缘的检测,从而提高成像技术的信噪比。此外,大多数现有的β探测器不提供表面传感或成像功能。因此,我们探索了可拉伸闪烁体的概念,以检测发射放射性示踪剂的β粒子,这些放射性示踪剂将直接部署在靶器官上。这种探测器,我们称之为成像皮肤,将作为由发光剂和生物相容性可拉伸材料制成的间接辐射探测器工作。我们的愿景是使用微创手术中常规使用的标准内窥镜来检测闪烁。此外,理想情况下,手术机器人系统将用于应用成像皮肤,允许精确控制每个部件,从而提高定位和任务可重复性。尽管仍处于探索阶段,但这种创新方法有可能通过实现实时成像来改善RGS期间肿瘤边缘的检测,最终改善手术结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
Lifetime engineering of bioelectronic implants with mechanically reliable thin film encapsulations The stochastic digital human is now enrolling for in silico imaging trials – Methods and tools for generating digital cohorts Updates on polyurethane and its multifunctional applications in biomedical engineering Wearable facial electromyography: in the face of new opportunities A systematic review of cardiac in-silico clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1