Preparation of Nitrate Bilayer Membrane Ion-Selective Electrode Modified by Pericarpium Granati-Derived Biochar and Its Application in Practical Samples
Fozia, Guangyao Zhao, Yanhong Nie, Jianrong Jiang, Qian Chen, Chaogang Wang, Xu Xu, Ming Ying, Zhangli Hu, Hong Xu
{"title":"Preparation of Nitrate Bilayer Membrane Ion-Selective Electrode Modified by Pericarpium Granati-Derived Biochar and Its Application in Practical Samples","authors":"Fozia, Guangyao Zhao, Yanhong Nie, Jianrong Jiang, Qian Chen, Chaogang Wang, Xu Xu, Ming Ying, Zhangli Hu, Hong Xu","doi":"10.1007/s12678-023-00812-3","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>In this study, a <i>pericarpium granati</i>-derived biochar with phosphoric acid activation (PGCP) was prepared, characterized, and applied together with polypyrrole (PPy) to modify a glass carbon electrode (GCE) to construct a bilayer membrane nitrate ion-selective electrode (ISE, PPy/PGCP/GCE). The morphological results showed that PGCP possessed a porous structures. X-ray photoelectron spectroscopy analysis indicated that phosphorus added in PGCP was in the forms of P-O and P–C. The electrochemical impedance spectrum of the fabricated nitrate ISE showed a very low impedance, suggesting that PGCP can be used as an effective electron transfer mediator. The open circuit potential experiments indicated that the fabricated nitrate ISE exhibited a good linear potentiometric response to nitrate over a wide concentration range of 1 × 10<sup>−5</sup> to 5 × 10<sup>−1</sup> mol·L<sup>−1</sup> with Nernstian slope of 50.86 mV·dec<sup>−1</sup> at pH range of 3.5–9.5 and a short response time of less than 7.3 s. Its limit of detection (LOD) was determined to be 4.64 × 10<sup>−6</sup> mol·L<sup>−1</sup>. Both detection range and LOD are comparable or better than those of reported similar modified electrodes. The fabricated nitrate ISE exhibited a high selectivity with a good repeatability and stability. The selectivity sequence was determined as NO<sub>3</sub><sup>−</sup> > NO<sub>2</sub><sup>−</sup> > Cl<sup>−</sup> > H<sub>2</sub>PO<sub>4</sub><sup>−</sup> > CH<sub>3</sub>COO<sup>−</sup> > CO<sub>3</sub><sup>2−</sup> > SO<sub>4</sub><sup>2−</sup>. The fabricated nitrate ISE was validated by the nitrate detections of real samples from Shenzhen OCT wetland and laboratory wastewater, respectively, with the obtained detection discrepancy of less than 4% (RSD). This study provides useful reference information for the development of novel ISE in clinical laboratories and environmental monitoring.</p></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 4","pages":"534 - 545"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00812-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00812-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract
In this study, a pericarpium granati-derived biochar with phosphoric acid activation (PGCP) was prepared, characterized, and applied together with polypyrrole (PPy) to modify a glass carbon electrode (GCE) to construct a bilayer membrane nitrate ion-selective electrode (ISE, PPy/PGCP/GCE). The morphological results showed that PGCP possessed a porous structures. X-ray photoelectron spectroscopy analysis indicated that phosphorus added in PGCP was in the forms of P-O and P–C. The electrochemical impedance spectrum of the fabricated nitrate ISE showed a very low impedance, suggesting that PGCP can be used as an effective electron transfer mediator. The open circuit potential experiments indicated that the fabricated nitrate ISE exhibited a good linear potentiometric response to nitrate over a wide concentration range of 1 × 10−5 to 5 × 10−1 mol·L−1 with Nernstian slope of 50.86 mV·dec−1 at pH range of 3.5–9.5 and a short response time of less than 7.3 s. Its limit of detection (LOD) was determined to be 4.64 × 10−6 mol·L−1. Both detection range and LOD are comparable or better than those of reported similar modified electrodes. The fabricated nitrate ISE exhibited a high selectivity with a good repeatability and stability. The selectivity sequence was determined as NO3− > NO2− > Cl− > H2PO4− > CH3COO− > CO32− > SO42−. The fabricated nitrate ISE was validated by the nitrate detections of real samples from Shenzhen OCT wetland and laboratory wastewater, respectively, with the obtained detection discrepancy of less than 4% (RSD). This study provides useful reference information for the development of novel ISE in clinical laboratories and environmental monitoring.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.