MUSIC-Based Pilot Decontamination and Channel Estimation in Multiuser Massive MIMO System

Wei-Chiang Wu
{"title":"MUSIC-Based Pilot Decontamination and Channel Estimation in Multiuser Massive MIMO System","authors":"Wei-Chiang Wu","doi":"10.11989/JEST.1674-862X.80102112","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station (BS) is equipped with a very large number of antennas (also referred to as “massive multiple-input multiple-output (MIMO)”). We consider a time-division duplexing (TDD) scheme, in which reciprocity between the uplink and downlink channels can be assumed. Channel estimation is essential for downlink beamforming in massive MIMO, nevertheless, the pilot contamination effect hinders accurate channel estimation, which leads to overall performance degradation. Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals (AOAs) in the large-scale antenna system, we propose a multiple signals classification (MUSIC) based channel estimation algorithm during the uplink transmission. Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":"18 1","pages":"266-275"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.11989/JEST.1674-862X.80102112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station (BS) is equipped with a very large number of antennas (also referred to as “massive multiple-input multiple-output (MIMO)”). We consider a time-division duplexing (TDD) scheme, in which reciprocity between the uplink and downlink channels can be assumed. Channel estimation is essential for downlink beamforming in massive MIMO, nevertheless, the pilot contamination effect hinders accurate channel estimation, which leads to overall performance degradation. Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals (AOAs) in the large-scale antenna system, we propose a multiple signals classification (MUSIC) based channel estimation algorithm during the uplink transmission. Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多用户大规模MIMO系统中基于MUSIC的导频净化与信道估计
本文解决了多用户多小区无线通信系统中的信道估计问题,其中基站(BS)配备了大量天线(也称为“大规模多输入多输出(MIMO)”)。我们考虑一种时分双工(TDD)方案,其中可以假设上行链路和下行链路信道之间的互易性。信道估计对于大规模MIMO中的下行链路波束形成至关重要,然而,导频污染效应阻碍了准确的信道估计,从而导致整体性能下降。得益于大规模天线系统中非重叠到达角(AOA)的信号子空间和干扰子空间之间的渐近正交性,我们提出了一种基于多信号分类(MUSIC)的上行链路传输信道估计算法。分析和数值结果验证了所提出的信道估计算法在多用户多小区大规模MIMO系统中的完全导频净化和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Science and Technology
Journal of Electronic Science and Technology Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
0.00%
发文量
1362
审稿时长
99 days
期刊介绍: JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.
期刊最新文献
Source localization based on field signatures: Laboratory ultrasonic validation Machine learning model based on non-convex penalized huberized-SVM Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology A multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction Big data challenge for monitoring quality in higher education institutions using business intelligence dashboards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1