A Technical Guide to Using Amazon's Mechanical Turk in Behavioral Accounting Research

IF 0.7 Q4 BUSINESS, FINANCE Behavioral Research in Accounting Pub Date : 2018-03-01 DOI:10.2308/BRIA-51977
Steve Buchheit, Marcus M. Doxey, Troy Pollard, Shane R. Stinson
{"title":"A Technical Guide to Using Amazon's Mechanical Turk in Behavioral Accounting Research","authors":"Steve Buchheit, Marcus M. Doxey, Troy Pollard, Shane R. Stinson","doi":"10.2308/BRIA-51977","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Multiple social science researchers claim that online data collection, mainly via Amazon's Mechanical Turk (MTurk), has revolutionized the behavioral sciences (Gureckis et al. 2016; Litman, Robinson, and Abberbock 2017). While MTurk-based research has grown exponentially in recent years (Chandler and Shapiro 2016), reasonable concerns have been raised about online research participants' ability to proxy for traditional research participants (Chandler, Mueller, and Paolacci 2014). This paper reviews recent MTurk research and provides further guidance for recruiting samples of MTurk participants from populations of interest to behavioral accounting researchers. First, we provide guidance on the logistics of using MTurk and discuss the potential benefits offered by TurkPrime, a third-party service provider. Second, we discuss ways to overcome challenges related to targeted participant recruiting in an online environment. Finally, we offer suggestions for disclosures that authors may provide about t...","PeriodicalId":46356,"journal":{"name":"Behavioral Research in Accounting","volume":"30 1","pages":"111-122"},"PeriodicalIF":0.7000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Research in Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/BRIA-51977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 54

Abstract

ABSTRACT: Multiple social science researchers claim that online data collection, mainly via Amazon's Mechanical Turk (MTurk), has revolutionized the behavioral sciences (Gureckis et al. 2016; Litman, Robinson, and Abberbock 2017). While MTurk-based research has grown exponentially in recent years (Chandler and Shapiro 2016), reasonable concerns have been raised about online research participants' ability to proxy for traditional research participants (Chandler, Mueller, and Paolacci 2014). This paper reviews recent MTurk research and provides further guidance for recruiting samples of MTurk participants from populations of interest to behavioral accounting researchers. First, we provide guidance on the logistics of using MTurk and discuss the potential benefits offered by TurkPrime, a third-party service provider. Second, we discuss ways to overcome challenges related to targeted participant recruiting in an online environment. Finally, we offer suggestions for disclosures that authors may provide about t...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行为会计研究中使用亚马逊机械土耳其人的技术指南
摘要:多位社会科学研究人员声称,主要通过亚马逊的机械土耳其人(MTurk)进行的在线数据收集已经彻底改变了行为科学(Gureckis et al.2016;Litman、Robinson和Abberbock,2017)。尽管近年来基于MTurk的研究呈指数级增长(Chandler和Shapiro,2016年),但人们对在线研究参与者代理传统研究参与者的能力提出了合理的担忧(Chandlers、Mueller和Paolacci,2014年)。本文回顾了最近的MTurk研究,并为从行为会计研究人员感兴趣的人群中招募MTurk参与者样本提供了进一步的指导。首先,我们为使用MTurk的物流提供指导,并讨论第三方服务提供商TurkPrime提供的潜在好处。其次,我们讨论了如何克服与在线环境中有针对性的参与者招募相关的挑战。最后,我们提出了作者可能提供的有关披露的建议。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
11
期刊最新文献
Relative Performance Information and Rule-Breaking: The Moderating Effect of Group Identity In All Fairness: A Meta-Analysis of the Tax Fairness–Tax Compliance Literature I’m Working Hard, but It’s Hardly Working: The Consequences of Motivating Employee Effort That Fails to Achieve Performance Targets Auditor Materiality Disclosures and Investor Trust: How to Address Conditional Risks of Disclosure Mandates The Conservatism Principle and Asymmetric Preferences over Reporting Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1