Dual symmetry breaking tunable bound states in the continuum in all dielectric split ring metamaterials

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanophotonics Pub Date : 2023-04-01 DOI:10.1117/1.JNP.17.026010
Zhiqiang Hao, Wen Wang, Zhenlin Sun
{"title":"Dual symmetry breaking tunable bound states in the continuum in all dielectric split ring metamaterials","authors":"Zhiqiang Hao, Wen Wang, Zhenlin Sun","doi":"10.1117/1.JNP.17.026010","DOIUrl":null,"url":null,"abstract":"Abstract. Dual-symmetry breakings including permittivity asymmetry and geometry asymmetry have been studied in all dielectric split-ring metamaterials supported bound states in the continuum. For any single symmetry breaking, the proposed metamaterials can support simultaneously dual quasi-bound states in the continuum (quasi-BICs). Multipolar decomposition reveals that dual quasi-BICs induced by permittivity asymmetry are both governed by magnetic dipole and electric quadrupole, whereas dual quasi-BICs induced by geometry asymmetry are governed by magnetic dipoles. Under the combined effect of the two types of symmetry breaking, it is found that the quasi-BIC can be weaken and vanished, which is different from enhanced quasi-BIC effect induced by a single symmetry breaking. In addition, asymmetric magnetic and electric field distributions can be realized by selecting different type of symmetry breaking, providing a new way of indirectly manipulating the localized magnetic fields. We show that dual-symmetry breakings point to a unique routine to analyze the physical mechanism of quasi-BICs, which furthermore provide a useful insight into their tuning behavior.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"026010"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.026010","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Dual-symmetry breakings including permittivity asymmetry and geometry asymmetry have been studied in all dielectric split-ring metamaterials supported bound states in the continuum. For any single symmetry breaking, the proposed metamaterials can support simultaneously dual quasi-bound states in the continuum (quasi-BICs). Multipolar decomposition reveals that dual quasi-BICs induced by permittivity asymmetry are both governed by magnetic dipole and electric quadrupole, whereas dual quasi-BICs induced by geometry asymmetry are governed by magnetic dipoles. Under the combined effect of the two types of symmetry breaking, it is found that the quasi-BIC can be weaken and vanished, which is different from enhanced quasi-BIC effect induced by a single symmetry breaking. In addition, asymmetric magnetic and electric field distributions can be realized by selecting different type of symmetry breaking, providing a new way of indirectly manipulating the localized magnetic fields. We show that dual-symmetry breakings point to a unique routine to analyze the physical mechanism of quasi-BICs, which furthermore provide a useful insight into their tuning behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全介质开口环超材料中连续体中的双对称破缺可调谐束缚态
摘要研究了在连续体中支持束缚态的全介质分裂环超材料中的双对称断裂,包括介电常数不对称和几何不对称。对于任何单一对称性破坏,所提出的超材料可以同时支持连续体中的对偶准束缚态(准BICs)。多极分解表明,由介电常数不对称引起的对偶准BIC由磁偶极子和电四极控制,而由几何不对称引起的二重准BIC则由磁偶极子控制。在两种对称性破缺的共同作用下,发现准BIC可以减弱和消失,这与单一对称性破断引起的准BIC增强效应不同。此外,通过选择不同类型的对称破缺可以实现非对称磁场和电场分布,为间接操纵局部磁场提供了一种新的方法。我们表明,对偶对称断裂指向一个独特的例程来分析准BICs的物理机制,这进一步为了解它们的调谐行为提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
期刊最新文献
Optical spin injection and detection in submonolayer InAs/GaAs nanostructures by circularly polarized photoluminescence Analysis of the Purcell effect of plasmonic supercrystal films and nanocavities made by close-packed metallic nanoparticles Fabrication of silver-decorated zinc oxide nanowire sensor in microchannels for surface-enhanced Raman spectroscopy Resilience of circular-polarization-state-sensitive reflection against morphological disorder in chiral structures Tiny hybrid modified organosilane-titanium dioxide nanocomposites with dual photonic behavior: insights for enhanced in-flow signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1