Evaluation of Possible Beneficial Effect of Tricalcium Phosphate/Collagen (TCP/collagen) Nanocomposite Scaffold on Bone Healing in Rabbits: Biochemical Assessments
Hanie Farahi, Siamak Mashhadi-Rafie, A. Jahandideh, A. Asghari, S. H. Shirazi-Beheshtiha
{"title":"Evaluation of Possible Beneficial Effect of Tricalcium Phosphate/Collagen (TCP/collagen) Nanocomposite Scaffold on Bone Healing in Rabbits: Biochemical Assessments","authors":"Hanie Farahi, Siamak Mashhadi-Rafie, A. Jahandideh, A. Asghari, S. H. Shirazi-Beheshtiha","doi":"10.22034/IVSA.2019.193769.1189","DOIUrl":null,"url":null,"abstract":"Objective- The aim of this study was to evaluate possible beneficial effect of tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold on bone healing in rabbits using biochemical assessmentsDesign- Experimental studyAnimals- Twelve healthy male white New Zealand rabbitsProcedures- The rabbits were marked with non-toxic color and randomly divided into two groups of 6 animals each. In the first group (SHAM) the defect was made and with no treatment the wound was closed. In the second group (TCP/C) the tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold was implanted into the defect. Before the procedures (day 0) and on 7, 15, 30, 45 and 60 postoperative days the blood samples were taken from jugular vein and undergone hematological and biochemical assessments.Results- The hematological, biochemical and oxidative stress parameters including WBC, RBC, HCT, PLT, neutrophil, lymphocytes, BUN, Creatinine, AST, ALT, ALP, SOD, GPX and MDA showed statistically significant differences between Sham and TCP/C groups (p<0.05). Conclusion and clinical relevance- It was concluded that TCP/collagen nanocomposite improved the biochemical parameters in the nanocomposite treated animals and could be of clinical benefit in reconstruction of bone defects and could be considered as a scaffold in bone fractures.","PeriodicalId":14554,"journal":{"name":"Iranian Journal of Veterinary Surgery","volume":"14 1","pages":"162-172"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Veterinary Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IVSA.2019.193769.1189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 1
Abstract
Objective- The aim of this study was to evaluate possible beneficial effect of tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold on bone healing in rabbits using biochemical assessmentsDesign- Experimental studyAnimals- Twelve healthy male white New Zealand rabbitsProcedures- The rabbits were marked with non-toxic color and randomly divided into two groups of 6 animals each. In the first group (SHAM) the defect was made and with no treatment the wound was closed. In the second group (TCP/C) the tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold was implanted into the defect. Before the procedures (day 0) and on 7, 15, 30, 45 and 60 postoperative days the blood samples were taken from jugular vein and undergone hematological and biochemical assessments.Results- The hematological, biochemical and oxidative stress parameters including WBC, RBC, HCT, PLT, neutrophil, lymphocytes, BUN, Creatinine, AST, ALT, ALP, SOD, GPX and MDA showed statistically significant differences between Sham and TCP/C groups (p<0.05). Conclusion and clinical relevance- It was concluded that TCP/collagen nanocomposite improved the biochemical parameters in the nanocomposite treated animals and could be of clinical benefit in reconstruction of bone defects and could be considered as a scaffold in bone fractures.