{"title":"A hierarchical constraint-based graph neural network for imputing urban area data","authors":"Shengwen Li, Wanchen Yang, Suzhen Huang, Renyao Chen, Xuyang Cheng, Shunping Zhou, Junfang Gong, Haoyue Qian, Fang Fang","doi":"10.1080/13658816.2023.2239307","DOIUrl":null,"url":null,"abstract":"Abstract Urban area data are strategically important for public safety, urban management, and planning. Previous research has attempted to estimate the values of unsampled regular areas, while minimal attention has been paid to the values of irregular areas. To address this problem, this study proposes a hierarchical geospatial graph neural network model based on the spatial hierarchical constraints of areas. The model first characterizes spatial relationships between irregular areas at different spatial scales. Then, it aggregates information from neighboring areas with graph neural networks, and finally, it imputes missing values in fine-grained areas under hierarchical relationship constraints. To investigate the performance of the proposed model, we constructed a new dataset consisting of the urban statistical values of irregular areas in New York City. Experiments on the dataset show that the proposed model outperforms state-of-the-art baselines and exhibits robustness. The model is adaptable to numerous geographic applications, including traffic management, public safety, and public resource allocation.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1998 - 2019"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2239307","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Urban area data are strategically important for public safety, urban management, and planning. Previous research has attempted to estimate the values of unsampled regular areas, while minimal attention has been paid to the values of irregular areas. To address this problem, this study proposes a hierarchical geospatial graph neural network model based on the spatial hierarchical constraints of areas. The model first characterizes spatial relationships between irregular areas at different spatial scales. Then, it aggregates information from neighboring areas with graph neural networks, and finally, it imputes missing values in fine-grained areas under hierarchical relationship constraints. To investigate the performance of the proposed model, we constructed a new dataset consisting of the urban statistical values of irregular areas in New York City. Experiments on the dataset show that the proposed model outperforms state-of-the-art baselines and exhibits robustness. The model is adaptable to numerous geographic applications, including traffic management, public safety, and public resource allocation.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.