{"title":"Design, integration and implementation of crypto cores in an SoC environment","authors":"J. Pandey, Sanskriti Gupta, A. Karmakar","doi":"10.1108/mi-09-2021-0091","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe paper aims to develop a systematic approach to design, integrate, and implement a set of crypto cores in a system-on-chip SoC) environment for data security applications. The advanced encryption standard (AES) and PRESENT block ciphers are deployed together, leading to a common crypto chip for performing encryption and decryption operations.\n\n\nDesign/methodology/approach\nAn integrated very large-scale integration (VLSI) architecture and its implementation for the AES and PRESENT ciphers is proposed. As per the choice, the architecture performs encryption or decryption operations for the selected cipher. Experimental results of the field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) implementations and related design analysis are provided.\n\n\nFindings\nFPGA implementation of the architecture on Xilinx xc5vfx70t-1-ff1136 device consumes 19% slices, whereas the ASIC design is implemented in 180 nm complementary metal-oxide semiconductor ASIC technology that takes 1.0746 mm2 of standard cell area and consumes 14.26 mW of power at 50 MHz clock frequency. A secure audio application using the designed architecture on an open source SoC environment is also provided. A test methodology for validation of the designed chip using an FPGA-based platform and tools is discussed.\n\n\nOriginality/value\nThe proposed architecture is compared with a set of existing hardware architectures for analyzing various design metrics such as latency, area, maximum operating frequency, power, and throughput.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-09-2021-0091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The paper aims to develop a systematic approach to design, integrate, and implement a set of crypto cores in a system-on-chip SoC) environment for data security applications. The advanced encryption standard (AES) and PRESENT block ciphers are deployed together, leading to a common crypto chip for performing encryption and decryption operations.
Design/methodology/approach
An integrated very large-scale integration (VLSI) architecture and its implementation for the AES and PRESENT ciphers is proposed. As per the choice, the architecture performs encryption or decryption operations for the selected cipher. Experimental results of the field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) implementations and related design analysis are provided.
Findings
FPGA implementation of the architecture on Xilinx xc5vfx70t-1-ff1136 device consumes 19% slices, whereas the ASIC design is implemented in 180 nm complementary metal-oxide semiconductor ASIC technology that takes 1.0746 mm2 of standard cell area and consumes 14.26 mW of power at 50 MHz clock frequency. A secure audio application using the designed architecture on an open source SoC environment is also provided. A test methodology for validation of the designed chip using an FPGA-based platform and tools is discussed.
Originality/value
The proposed architecture is compared with a set of existing hardware architectures for analyzing various design metrics such as latency, area, maximum operating frequency, power, and throughput.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.