Machine learning in run-time control of multicore processor systems

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2023-08-02 DOI:10.1515/itit-2023-0056
F. Maurer, Moritz Thoma, A. Surhonne, Bryan Donyanavard, A. Herkersdorf
{"title":"Machine learning in run-time control of multicore processor systems","authors":"F. Maurer, Moritz Thoma, A. Surhonne, Bryan Donyanavard, A. Herkersdorf","doi":"10.1515/itit-2023-0056","DOIUrl":null,"url":null,"abstract":"Abstract Modern embedded and cyber-physical applications consist of critical and non-critical tasks co-located on multiprocessor systems on chip (MPSoCs). Co-location of tasks results in contention for shared resources, resulting in interference on interconnect, processing units, storage, etc. Hence, machine learning-based resource managers must operate even non-critical tasks within certain constraints to ensure proper execution of critical tasks. In this paper we demonstrate and evaluate countermeasures based on backup policies to enhance rule-based reinforcement learning to enforce constraints. Detailed experiments reveal the CPUs’ performance degradation caused by different designs, as well as their effectiveness in preventing constraint violations. Further, we exploit the interpretability of our approach to further improve the resource manager’s operation by adding designers’ experience into the rule set.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Modern embedded and cyber-physical applications consist of critical and non-critical tasks co-located on multiprocessor systems on chip (MPSoCs). Co-location of tasks results in contention for shared resources, resulting in interference on interconnect, processing units, storage, etc. Hence, machine learning-based resource managers must operate even non-critical tasks within certain constraints to ensure proper execution of critical tasks. In this paper we demonstrate and evaluate countermeasures based on backup policies to enhance rule-based reinforcement learning to enforce constraints. Detailed experiments reveal the CPUs’ performance degradation caused by different designs, as well as their effectiveness in preventing constraint violations. Further, we exploit the interpretability of our approach to further improve the resource manager’s operation by adding designers’ experience into the rule set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核处理器系统运行时控制中的机器学习
摘要现代嵌入式和网络物理应用程序由位于片上多处理器系统(MPSoC)上的关键任务和非关键任务组成。任务的协同定位会导致对共享资源的争夺,从而对互连、处理单元、存储等造成干扰。因此,基于机器学习的资源管理器必须在某些约束条件下操作甚至是非关键任务,以确保关键任务的正确执行。在本文中,我们展示并评估了基于备份策略的对策,以增强基于规则的强化学习,从而强制执行约束。详细的实验揭示了不同设计导致的CPU性能下降,以及它们在防止违反约束方面的有效性。此外,我们利用我们方法的可解释性,通过将设计者的经验添加到规则集中,进一步改进资源管理器的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1