A comprehensive review of magnetorheological fluid assisted finishing processes

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2022-05-04 DOI:10.1080/10910344.2022.2129982
A. Rajput, M. Das, S. Kapil
{"title":"A comprehensive review of magnetorheological fluid assisted finishing processes","authors":"A. Rajput, M. Das, S. Kapil","doi":"10.1080/10910344.2022.2129982","DOIUrl":null,"url":null,"abstract":"Abstract In today’s manufacturing sector, it is required to manufacture products that have an exceptionally low tolerance. The desired high precision (or low tolerance) can be obtained through various finishing processes, which consist of bonded (honing, grinding, lapping, etc.) or unbonded (abrasive flow finishing) forms of the tool. An unbonded form of tool is more reliable and beneficial because it helps to achieve a highly polished surface without affecting the material topography of the product. The literature survey shows that an effective unbonded form of finishing tool can be produced through the assistance of Magnetorheological (MR) Fluid, as it has in-situ control on its rheological properties. The MR fluid is mainly composed of abrasives and ferromagnetic powder mixed in a viscoplastic base medium. The unbonded multipoint cutting tool is generated during the finishing operations, which produces a mirror-like polished surface. Several MR fluid-assisted finishing processes have been developed in the last few decades. This article explores the evolution of MR fluid-assisted finishing processes, along with their development, applications, influencing process parameters, the composition of MR fluids, and governing analytical models. The key capabilities and limitations of different MR fluid-assisted finishing processes are also discussed, and a comparison is made to provide an overview at a glance.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129982","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract In today’s manufacturing sector, it is required to manufacture products that have an exceptionally low tolerance. The desired high precision (or low tolerance) can be obtained through various finishing processes, which consist of bonded (honing, grinding, lapping, etc.) or unbonded (abrasive flow finishing) forms of the tool. An unbonded form of tool is more reliable and beneficial because it helps to achieve a highly polished surface without affecting the material topography of the product. The literature survey shows that an effective unbonded form of finishing tool can be produced through the assistance of Magnetorheological (MR) Fluid, as it has in-situ control on its rheological properties. The MR fluid is mainly composed of abrasives and ferromagnetic powder mixed in a viscoplastic base medium. The unbonded multipoint cutting tool is generated during the finishing operations, which produces a mirror-like polished surface. Several MR fluid-assisted finishing processes have been developed in the last few decades. This article explores the evolution of MR fluid-assisted finishing processes, along with their development, applications, influencing process parameters, the composition of MR fluids, and governing analytical models. The key capabilities and limitations of different MR fluid-assisted finishing processes are also discussed, and a comparison is made to provide an overview at a glance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁流变液辅助精加工工艺综述
摘要在当今的制造业中,要求制造公差极低的产品。可以通过各种精加工工艺获得所需的高精度(或低公差),这些精加工工艺包括结合(珩磨、研磨、研磨等)或未结合(磨料流精加工)形式的工具。未粘合形式的工具更可靠和有益,因为它有助于在不影响产品材料形貌的情况下获得高度抛光的表面。文献调查表明,通过磁流变(MR)流体的辅助,可以生产出有效的无粘结形式的精加工工具,因为它可以原位控制其流变特性。磁流变液主要由混在粘塑性基体介质中的磨料和铁磁性粉末组成。无粘结多点切削刀具是在精加工过程中产生的,可产生镜面抛光表面。在过去的几十年里,已经开发了几种MR流体辅助精加工工艺。本文探讨了磁流变液辅助精加工工艺的发展、应用、影响工艺参数、磁流变液的组成和控制分析模型。还讨论了不同MR流体辅助精加工工艺的关键能力和局限性,并进行了比较,以提供一个概览。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1