Effect of climate change on heat waves in the South Sea of Iran

J. Safieh, D. Rebwar, J. Forough
{"title":"Effect of climate change on heat waves in the South Sea of Iran","authors":"J. Safieh, D. Rebwar, J. Forough","doi":"10.15421/2020_211","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to identify the heat waves of the South Sea of Iran and compare the conditions in the present and future. To reach this goal, the average daily temperature of 35 years has been used. Also, in order to predict future heat waves, the maximum temperature data of four models of the CMIP5 model series, according to the RCP 8.5 scenario, has been used for the period 2040-2074. In order to reverse the output of the climatic models, artificial neural networks were used to identify the thermal waves, and the Fumiaki index was used to determine the thermal waves. Using the programming in MATLAB software, the days when their temperature exceeded 2 standard deviations as a thermal wave were identified. The results of the research show that the short-term heat waves are more likely to occur. Heat waves in the base period have a significant but poorly developed trend, so that the frequency has increased in recent years. In the period from 2040 to 2074, the frequency of thermal waves has a significant decreasing trend, but usually with low coefficients. However, for some stations from 2040 to 2074, the frequency of predicted heat waves increased. \n \nKeywords: Climate change; Heat waves; RCP 8.5; Climate models; CMIP5 \n  \n \nReferences \n \nCox, P. M., Huntingford, C., & Williamson, M. S. 2018. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553(7688), 319-322. \n \nLhotka, O., Kyselý, J., & Farda, A. 2018. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theoretical and applied climatology, 131(3-4), 1043-1054. \n \nGao, M., Yang, J., Wang, B., Zhou, S., Gong, D., & Kim, S. J. 2018. How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation. Climate Dynamics, 51(11-12), 4421-4437. \n \nZhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., ... & Liu, X. 2018. Interactions between urban heat islands and heat waves. Environmental research letters, 13(3), 034003. \n \nCoquet, S., Labadie, M., Vivier-Darrigol, M., Liege, M., & Vandentorren, S. 2018. Early heat wave and heat stroke during distance running, April 2017, France. Revue d'Epidemiologie et de Sante Publique, 66, S341. \n \nVarghese, B. M., Barnett, A. G., Hansen, A. L., Bi, P., Nairn, J., Rowett, S., ... & Pisaniello, D. L. 2019. Characterising the impact of heatwaves on work-related injuries and illnesses in three Australian cities using a standard heatwave definition-Excess Heat Factor (EHF). Journal of exposure science & environmental epidemiology, 29(6), 821-830. \n \nSherbakov, T., Malig, B., Guirguis, K., Gershunov, A., & Basu, R. 2018. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environmental research, 160, 83-90. \n \nMoriarty, P. and Honnery, D., 2015. Future cities in a warming world. Futures, 66(1), 45-53. \n \nTakada, M., Sotokawa, H., Ishimaru, Y., Imai, T., Ohira, M., Arai, H., ... & Matsuo, Y. 2017. U.S. Patent No. 9,664,452. Washington, DC: U.S. Patent and Trademark Office. \n \nRaghavendra, A., Dai, A., Milrad, S. M., & Cloutier-Bisbee, S. R. 2019. Floridian heatwaves and extreme precipitation: future climate projections. Climate Dynamics, 52(1-2), 495-508. \n \nGeirinhas, J. L., Trigo, R. M., Libonati, R., Castro, L. C., Sousa, P. M., Coelho, C. A., ... & Monica de Avelar, F. M. 2019. Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Science of The Total Environment, 650, 796-808. \n \nImada, Y., Shiogama, H., Takahashi, C., Watanabe, M., Mori, M., Kamae, Y., & Maeda, S. 2018. Climate change increased the likelihood of the 2016 heat extremes in Asia. Bulletin of the American Meteorological Society, 99(1), S97-S101.","PeriodicalId":23422,"journal":{"name":"Ukrainian Journal of Ecology","volume":"10 1","pages":"87-93"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/2020_211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research is to identify the heat waves of the South Sea of Iran and compare the conditions in the present and future. To reach this goal, the average daily temperature of 35 years has been used. Also, in order to predict future heat waves, the maximum temperature data of four models of the CMIP5 model series, according to the RCP 8.5 scenario, has been used for the period 2040-2074. In order to reverse the output of the climatic models, artificial neural networks were used to identify the thermal waves, and the Fumiaki index was used to determine the thermal waves. Using the programming in MATLAB software, the days when their temperature exceeded 2 standard deviations as a thermal wave were identified. The results of the research show that the short-term heat waves are more likely to occur. Heat waves in the base period have a significant but poorly developed trend, so that the frequency has increased in recent years. In the period from 2040 to 2074, the frequency of thermal waves has a significant decreasing trend, but usually with low coefficients. However, for some stations from 2040 to 2074, the frequency of predicted heat waves increased. Keywords: Climate change; Heat waves; RCP 8.5; Climate models; CMIP5   References Cox, P. M., Huntingford, C., & Williamson, M. S. 2018. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553(7688), 319-322. Lhotka, O., Kyselý, J., & Farda, A. 2018. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theoretical and applied climatology, 131(3-4), 1043-1054. Gao, M., Yang, J., Wang, B., Zhou, S., Gong, D., & Kim, S. J. 2018. How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation. Climate Dynamics, 51(11-12), 4421-4437. Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., ... & Liu, X. 2018. Interactions between urban heat islands and heat waves. Environmental research letters, 13(3), 034003. Coquet, S., Labadie, M., Vivier-Darrigol, M., Liege, M., & Vandentorren, S. 2018. Early heat wave and heat stroke during distance running, April 2017, France. Revue d'Epidemiologie et de Sante Publique, 66, S341. Varghese, B. M., Barnett, A. G., Hansen, A. L., Bi, P., Nairn, J., Rowett, S., ... & Pisaniello, D. L. 2019. Characterising the impact of heatwaves on work-related injuries and illnesses in three Australian cities using a standard heatwave definition-Excess Heat Factor (EHF). Journal of exposure science & environmental epidemiology, 29(6), 821-830. Sherbakov, T., Malig, B., Guirguis, K., Gershunov, A., & Basu, R. 2018. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environmental research, 160, 83-90. Moriarty, P. and Honnery, D., 2015. Future cities in a warming world. Futures, 66(1), 45-53. Takada, M., Sotokawa, H., Ishimaru, Y., Imai, T., Ohira, M., Arai, H., ... & Matsuo, Y. 2017. U.S. Patent No. 9,664,452. Washington, DC: U.S. Patent and Trademark Office. Raghavendra, A., Dai, A., Milrad, S. M., & Cloutier-Bisbee, S. R. 2019. Floridian heatwaves and extreme precipitation: future climate projections. Climate Dynamics, 52(1-2), 495-508. Geirinhas, J. L., Trigo, R. M., Libonati, R., Castro, L. C., Sousa, P. M., Coelho, C. A., ... & Monica de Avelar, F. M. 2019. Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Science of The Total Environment, 650, 796-808. Imada, Y., Shiogama, H., Takahashi, C., Watanabe, M., Mori, M., Kamae, Y., & Maeda, S. 2018. Climate change increased the likelihood of the 2016 heat extremes in Asia. Bulletin of the American Meteorological Society, 99(1), S97-S101.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化对伊朗南海热浪的影响
本研究的目的是识别伊朗南海的热浪,并比较当前和未来的情况。为了实现这一目标,我们采用了35年的平均日温度。此外,为了预测未来的热浪,根据RCP 8.5情景,CMIP5模型系列的四个模型的最高温度数据已用于2040-2074年期间。为了反演气候模型的输出,使用人工神经网络来识别热浪,并使用Fumiaki指数来确定热浪。使用MATLAB软件中的编程,识别出它们的温度超过2个标准偏差的天数作为热浪。研究结果表明,短期热浪更有可能发生。基期的热浪有明显但发展缓慢的趋势,因此近年来频率有所增加。在2040年至2074年期间,热浪的频率有显著的下降趋势,但通常系数较低。然而,对于2040年至2074年的一些观测站,预测的热浪频率有所增加。关键词:气候变化;热浪;RCP 8.5;气候模型;CMIP5参考Cox,P.M.,Huntingford,C.和Williamson,M.S.2018。全球温度变化对平衡气候敏感性的紧急约束。《自然》,553(7688),319-322。Lhotka,O.、Kyselý,J.和Farda,A.2018。中欧热浪的气候变化情景及其不确定性。理论与应用气候学,131(3-4),1043-1054。高,M.,杨,J.,王,B.,周,S.,龚,D.,金,S.J.2018。长江流域上空的热浪是如何和大气准双周振荡联系在一起的。气候动力学,51(11-12),4421-4437。赵,L.,奥本海默,M.,朱,Q.,鲍德温,J.W.,Ebi,K.L.,Bou-Zeid,E.,…&刘,X.2018。城市热岛和热浪之间的相互作用。环境研究信函,13(3),034003。Coquet,S.、Labadie,M.、Vivier Darrigol,M.、Liege,M.和Vandentorren,S.,2018。2017年4月,法国,长跑期间的早期热浪和中暑。《流行病与公共卫生评论》,66,S341。Varghese,B.M.,Barnett,A.G.,Hansen,A.L.,Bi,P.,Nairn,J.,Rowett,S.,…&Pisaniello,D.L.2019。使用标准热浪定义过热系数(EHF)描述澳大利亚三个城市的热浪对工伤和疾病的影响。暴露科学与环境流行病学杂志,29(6),821-830。Sherbakov,T.、Malig,B.、Guirguis,K.、Gershunov,A.和Basu,R.2018。1999年至2009年,加利福尼亚州的环境温度和额外的热浪对住院人数的影响。环境研究,16083-90。Moriarty,P.和Honnery,D.,2015。全球变暖中的未来城市。期货,66(1),45-53。Takada,M.,Sotokawa,H.,Ishimaru,Y.,Imai,T.,Ohira,M.,Arai,H.,…&Matsuo,Y.2017。美国专利号9664452。华盛顿特区:美国专利商标局。Raghavendra,A.,Dai,A.、Milrad,S.M.和Cloutier Bisbee,S.R.2019。佛罗里达州的热浪和极端降水:未来气候预测。气候动力学,52(1-2),495-508。Geirinhas,J.L.,Trigo,R.M.,Libonati,R.,Castro,L.C.,Sousa,P.M.,Coelho,C.A.,…&Monica de Avelar,F.M.2019。描述了2010年里约热内卢热浪期间的大气条件,其特征是死亡率过高。《整体环境科学》,650796-808。Imada,Y.、Shiogama,H.、Takahashi,C.、Watanabe,M.、Mori,M.、Kamae,Y.和Maeda,S.2018。气候变化增加了2016年亚洲出现极端高温的可能性。美国气象学会公报,99(1),S97-S101。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of public policy for reducing the transport environmental impact The red dwarf honey bee (Apis florea F.) faces the threat of extirpation in Northwest India Cluster analysis in ethological research Biological features of egg productivity of black African ostriches under a semi-intensive keeping Effects of essential oils on mycoflora and winter wheat seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1