A Review on Fabrication Methods, Characterization and Applications of Magnetic Iron Oxide Nanomaterials

IF 1.1 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Iranian Journal of Materials Science and Engineering Pub Date : 2020-03-10 DOI:10.22068/IJMSE.17.1.124
T. Mandal, D. Roy
{"title":"A Review on Fabrication Methods, Characterization and Applications of Magnetic Iron Oxide Nanomaterials","authors":"T. Mandal, D. Roy","doi":"10.22068/IJMSE.17.1.124","DOIUrl":null,"url":null,"abstract":"Magnetic iron oxide nanomaterials (MIONs) have been extensively investigated for the various important applications. Coprecipitation, hydrothermal, high temperature decomposition of organic precursors, microemulsions, polyol methods, electrochemical methods, aerosol method, sonolysis and green synthesis processes for the fabrication of MIONs have been reviewed. Different characterization methods like XRD, SEM, EDX and TEM for the as prepared MION materials have been studied. Important applications of MIONs in the field of biomedical, nanorobotics and energy devices have also been addressed in this review. Target oriented drug delivery and hyperthermia applications of MIONs have also focused.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.1.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Magnetic iron oxide nanomaterials (MIONs) have been extensively investigated for the various important applications. Coprecipitation, hydrothermal, high temperature decomposition of organic precursors, microemulsions, polyol methods, electrochemical methods, aerosol method, sonolysis and green synthesis processes for the fabrication of MIONs have been reviewed. Different characterization methods like XRD, SEM, EDX and TEM for the as prepared MION materials have been studied. Important applications of MIONs in the field of biomedical, nanorobotics and energy devices have also been addressed in this review. Target oriented drug delivery and hyperthermia applications of MIONs have also focused.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性氧化铁纳米材料的制备方法、表征及应用综述
磁性氧化铁纳米材料(MION)已被广泛研究用于各种重要应用。综述了共沉淀法、水热法、有机前体高温分解法、微乳液法、多元醇法、电化学法、气溶胶法、声分解法和绿色合成法等制备MION的工艺。对所制备的MION材料进行了XRD、SEM、EDX和TEM等表征方法的研究。本文还介绍了MION在生物医学、纳米机器人和能源设备领域的重要应用。MION的靶向药物递送和热疗应用也受到关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Materials Science and Engineering
Iranian Journal of Materials Science and Engineering MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
10.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Study of the Effect of Acid-base Character of the Lamellar Double Hydroxides "Zn3Al-CO3" and of the "Ghassoul" Clay on Their Redox Potential and Antimicrobial Activities Dry Sliding Friction and Wear of SnPb-Solder Affected Copper against Stainless Steel Counter Surface The Effect of Tin Concentration on Microstructural, Optical and Electrical Properties of ITO Nanoparticles Synthesized Using Green Method Physical and Structural Characteristics of Gel-derived Glasses Prepared via Different Drying Procedures Assessment of Structure, Dielectric and Gamma-Shielding Properties of Chemically Treated Natural Kaolinitic Clay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1