Enrique Ayala Franco, Rocío Edith López Martínez, V. H. Menéndez Domínguez
{"title":"Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos","authors":"Enrique Ayala Franco, Rocío Edith López Martínez, V. H. Menéndez Domínguez","doi":"10.6018/RED.463561","DOIUrl":null,"url":null,"abstract":"The problems of poor academic performance and lag are recurrent in higher-level educational institutions, especially at the beginning of university studies. The early detection of academic risk conditions enables the implementation of educational intervention measures to address factors of poor school performance, associated with the particular contexts of the students. The purpose of this study was to generate predictive models of academic risk, using educational data mining methods, specifically classification or prediction techniques, for the analysis, obtaining and validation of the models. The data used correspond to admission exam results and sociodemographic data of 415 students of the computer science majors at the Autonomous University of Yucatan (Mexico), enrolled between 2016 and 2019. The results show that the best model corresponding to the algorithm of LMT classification, with a precision value of 75.42% and 0.805 for the area under the ROC curve. It was possible to identify the best predictive attributes, particularly the bachelor entrance exam tests were very significant. The development of computer tools for the early detection of academic risk and strategies for timely educational intervention is proposed.","PeriodicalId":44096,"journal":{"name":"RED-Revista de Educacion a Distancia","volume":"21 1","pages":"1"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RED-Revista de Educacion a Distancia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6018/RED.463561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 4
Abstract
The problems of poor academic performance and lag are recurrent in higher-level educational institutions, especially at the beginning of university studies. The early detection of academic risk conditions enables the implementation of educational intervention measures to address factors of poor school performance, associated with the particular contexts of the students. The purpose of this study was to generate predictive models of academic risk, using educational data mining methods, specifically classification or prediction techniques, for the analysis, obtaining and validation of the models. The data used correspond to admission exam results and sociodemographic data of 415 students of the computer science majors at the Autonomous University of Yucatan (Mexico), enrolled between 2016 and 2019. The results show that the best model corresponding to the algorithm of LMT classification, with a precision value of 75.42% and 0.805 for the area under the ROC curve. It was possible to identify the best predictive attributes, particularly the bachelor entrance exam tests were very significant. The development of computer tools for the early detection of academic risk and strategies for timely educational intervention is proposed.