Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos

IF 1.9 Q2 EDUCATION & EDUCATIONAL RESEARCH RED-Revista de Educacion a Distancia Pub Date : 2021-04-21 DOI:10.6018/RED.463561
Enrique Ayala Franco, Rocío Edith López Martínez, V. H. Menéndez Domínguez
{"title":"Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos","authors":"Enrique Ayala Franco, Rocío Edith López Martínez, V. H. Menéndez Domínguez","doi":"10.6018/RED.463561","DOIUrl":null,"url":null,"abstract":"The problems of poor academic performance and lag are recurrent in higher-level educational institutions, especially at the beginning of university studies. The early detection of academic risk conditions enables the implementation of educational intervention measures to address factors of poor school performance, associated with the particular contexts of the students. The purpose of this study was to generate predictive models of academic risk, using educational data mining methods, specifically classification or prediction techniques, for the analysis, obtaining and validation of the models. The data used correspond to admission exam results and sociodemographic data of 415 students of the computer science majors at the Autonomous University of Yucatan (Mexico), enrolled between 2016 and 2019. The results show that the best model corresponding to the algorithm of LMT classification, with a precision value of 75.42% and 0.805 for the area under the ROC curve. It was possible to identify the best predictive attributes, particularly the bachelor entrance exam tests were very significant. The development of computer tools for the early detection of academic risk and strategies for timely educational intervention is proposed.","PeriodicalId":44096,"journal":{"name":"RED-Revista de Educacion a Distancia","volume":"21 1","pages":"1"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RED-Revista de Educacion a Distancia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6018/RED.463561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 4

Abstract

The problems of poor academic performance and lag are recurrent in higher-level educational institutions, especially at the beginning of university studies. The early detection of academic risk conditions enables the implementation of educational intervention measures to address factors of poor school performance, associated with the particular contexts of the students. The purpose of this study was to generate predictive models of academic risk, using educational data mining methods, specifically classification or prediction techniques, for the analysis, obtaining and validation of the models. The data used correspond to admission exam results and sociodemographic data of 415 students of the computer science majors at the Autonomous University of Yucatan (Mexico), enrolled between 2016 and 2019. The results show that the best model corresponding to the algorithm of LMT classification, with a precision value of 75.42% and 0.805 for the area under the ROC curve. It was possible to identify the best predictive attributes, particularly the bachelor entrance exam tests were very significant. The development of computer tools for the early detection of academic risk and strategies for timely educational intervention is proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于教育数据挖掘的计算机专业学生学业风险预测模型
学习成绩差和滞后的问题在高等教育机构中反复出现,尤其是在大学学习初期。及早发现学术风险状况,有助于实施教育干预措施,以解决与学生特定背景相关的学校表现不佳的因素。本研究的目的是使用教育数据挖掘方法,特别是分类或预测技术,生成学术风险的预测模型,用于分析、获取和验证模型。所使用的数据与2016年至2019年间尤卡坦自治大学计算机科学专业415名学生的入学考试成绩和社会人口统计数据相对应。结果表明,最佳模型对应LMT分类算法,ROC曲线下面积的精度值分别为75.42%和0.805。可以确定最佳的预测属性,尤其是学士入学考试非常重要。提出了开发用于早期检测学术风险的计算机工具和及时进行教育干预的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RED-Revista de Educacion a Distancia
RED-Revista de Educacion a Distancia EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
4.10
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
La argumentación multimodal en los cursos de formación docente para conectar la teoría con la práctica Aportaciones del análisis del discurso argumentativo a la comprensión del pensamiento docente: estudio de casos sobre la enseñanza de la lengua oral en Educación Infantil La educación del wreader en The Victorian Web: lecturas dinámicas, comentarios argumentativos, curaduría infinita La argumentación en el comentario de texto: creencias del profesorado de Lengua castellana y literatura en el contexto actual de recepción multimodal e hipertextual Leer para pensar. El libro ilustrado de no ficción en el desarrollo del pensamiento crítico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1