How to find similar companies using websites?

IF 2.2 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE World Patent Information Pub Date : 2023-06-01 DOI:10.1016/j.wpi.2023.102172
Jan-Peter Bergmann, Miriam Amin, Yuri Campbell, Karl Trela
{"title":"How to find similar companies using websites?","authors":"Jan-Peter Bergmann,&nbsp;Miriam Amin,&nbsp;Yuri Campbell,&nbsp;Karl Trela","doi":"10.1016/j.wpi.2023.102172","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The selection of industry partners for Research and Development (R&amp;D) is a challenging task for many organizations. Present methods for partner-selection, based on patents, publications or company databases, do often fail for highly specialized SMEs. Our approach aims at calculating the technological similarity for partner discovery. We apply methods from </span>Natural Language Processing (NLP) on companies’ website texts. We show that the deep-learning </span>language model<span> BERT<span> outperforms other methods at this task. Tested against expert-proven ground truth, it achieves an F1-score up to 0.90. Our results imply that website texts are useful for the purpose of estimating the similarity between companies. We see great potential in the scalability of the semantic analysis of company website texts.</span></span></p></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"73 ","pages":"Article 102172"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219023000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The selection of industry partners for Research and Development (R&D) is a challenging task for many organizations. Present methods for partner-selection, based on patents, publications or company databases, do often fail for highly specialized SMEs. Our approach aims at calculating the technological similarity for partner discovery. We apply methods from Natural Language Processing (NLP) on companies’ website texts. We show that the deep-learning language model BERT outperforms other methods at this task. Tested against expert-proven ground truth, it achieves an F1-score up to 0.90. Our results imply that website texts are useful for the purpose of estimating the similarity between companies. We see great potential in the scalability of the semantic analysis of company website texts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何找到使用网站的类似公司?
为研究和开发(R&D)选择行业合作伙伴对许多组织来说是一项具有挑战性的任务。目前基于专利、出版物或公司数据库的合作伙伴选择方法,往往不适用于高度专业化的中小企业。我们的方法旨在计算伙伴发现的技术相似度。我们将自然语言处理(NLP)的方法应用于公司网站文本。我们表明深度学习语言模型BERT在这个任务上优于其他方法。根据专家证明的真实情况进行测试,它达到了f1得分,最高可达0.90。我们的研究结果表明,网站文本对于估计公司之间的相似性是有用的。我们看到了公司网站文本语义分析的可扩展性的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World Patent Information
World Patent Information INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
3.50
自引率
18.50%
发文量
40
期刊介绍: The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.
期刊最新文献
Editorial Board A novel approach to measuring the scope of patent claims based on probabilities obtained from (large) language models Laser-based disassembly of end-of-life automotive traction batteries: A systematic patent analysis Factors affecting patent applicant choice of International Searching Authority Comprehensive analysis of the current status and future trends of microalgae bioreactors using patent and bibliometric approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1