Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling

B. Naderi, V. Roshanaei
{"title":"Critical-Path-Search Logic-Based Benders Decomposition Approaches for Flexible Job Shop Scheduling","authors":"B. Naderi, V. Roshanaei","doi":"10.1287/ijoo.2021.0056","DOIUrl":null,"url":null,"abstract":"We solve the flexible job shop scheduling problems (F-JSSPs) to minimize makespan. First, we compare the constraint programming (CP) model with the mixed-integer programming (MIP) model for F-JSSPs. Second, we exploit the decomposable structure within the models and develop an efficient CP–logic-based Benders decomposition (CP-LBBD) technique that combines the complementary strengths of MIP and CP models. Using 193 instances from the literature, we demonstrate that MIP, CP, and CP-LBBD achieve average optimality gaps of 25.50%, 13.46%, and 0.37% and find optima in 49, 112, and 156 instances of the problem, respectively. We also compare the performance of the CP-LBBD with an efficient Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, which has been appraised for finding 125 optima on 178 instances. CP-LBBD finds 143 optima on the same set of instances. We further examine the performance of the algorithms on 96 newly (and much larger) generated instances and demonstrate that the average optimality gap of the CP increases to 47.26%, whereas the average optimality of CP-LBBD remains around 1.44%. Finally, we conduct analytics on the performance of our models and algorithms and counterintuitively find out that as flexibility increases in data sets the performance CP-LBBD ameliorates, whereas that of the CP and MIP significantly deteriorates.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We solve the flexible job shop scheduling problems (F-JSSPs) to minimize makespan. First, we compare the constraint programming (CP) model with the mixed-integer programming (MIP) model for F-JSSPs. Second, we exploit the decomposable structure within the models and develop an efficient CP–logic-based Benders decomposition (CP-LBBD) technique that combines the complementary strengths of MIP and CP models. Using 193 instances from the literature, we demonstrate that MIP, CP, and CP-LBBD achieve average optimality gaps of 25.50%, 13.46%, and 0.37% and find optima in 49, 112, and 156 instances of the problem, respectively. We also compare the performance of the CP-LBBD with an efficient Greedy Randomized Adaptive Search Procedure (GRASP) algorithm, which has been appraised for finding 125 optima on 178 instances. CP-LBBD finds 143 optima on the same set of instances. We further examine the performance of the algorithms on 96 newly (and much larger) generated instances and demonstrate that the average optimality gap of the CP increases to 47.26%, whereas the average optimality of CP-LBBD remains around 1.44%. Finally, we conduct analytics on the performance of our models and algorithms and counterintuitively find out that as flexibility increases in data sets the performance CP-LBBD ameliorates, whereas that of the CP and MIP significantly deteriorates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关键路径搜索逻辑的柔性车间调度Benders分解方法
我们解决了灵活的车间调度问题(F-JSSP),以最大限度地缩短完工时间。首先,我们比较了F-JSSP的约束规划(CP)模型和混合整数规划(MIP)模型。其次,我们利用了模型中的可分解结构,并开发了一种高效的基于CP逻辑的Benders分解(CP-LBBD)技术,该技术结合了MIP和CP模型的互补优势。使用文献中的193个实例,我们证明了MIP、CP和CP-LBBD实现了25.50%、13.46%和0.37%的平均最优性差距,并分别在该问题的49、112和156个实例中找到了最优性。我们还将CP-LBBD的性能与一种有效的贪婪随机自适应搜索过程(GRASP)算法进行了比较,该算法已在178个实例中找到125个最优值。CP-LBBD在同一组实例上找到143个最优。我们在96个新生成的(以及更大的)实例上进一步检验了算法的性能,并证明了CP的平均最优性差距增加到47.26%,而CP-LBBD的平均最性保持在1.44%左右。最后,我们对我们的模型和算法的性能进行了分析,并违反直觉地发现,随着数据集灵活性的增加,CP-LBBD的性能有所改善,而CP和MIP的性能显著恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1