Band-selective universal 90° and 180° rotation pulses covering the aliphatic carbon chemical shift range for triple resonance experiments on 1.2 GHz spectrometers
Stella Slad, Wolfgang Bermel, Rainer Kümmerle, Daniel Mathieu, Burkhard Luy
{"title":"Band-selective universal 90° and 180° rotation pulses covering the aliphatic carbon chemical shift range for triple resonance experiments on 1.2 GHz spectrometers","authors":"Stella Slad, Wolfgang Bermel, Rainer Kümmerle, Daniel Mathieu, Burkhard Luy","doi":"10.1007/s10858-022-00404-1","DOIUrl":null,"url":null,"abstract":"<div><p>Biomolecular NMR spectroscopy requires large magnetic field strengths for high spectral resolution. Today’s highest fields comprise proton Larmor frequencies of 1.2 GHz and even larger field strengths are to be expected in the future. In protein triple resonance experiments, various carbon bandwidths need to be excited by selective pulses including the large aliphatic chemical shift range. When the spectrometer field strength is increased, the length of these pulses has to be decreased by the same factor, resulting in higher rf-amplitudes being necessary in order to cover the required frequency region. Currently available band-selective pulses like Q3/Q5 excite a narrow bandwidth compared to the necessary rf-amplitude. Because the maximum rf-power allowed in probeheads is limited, none of the selective universal rotation pulses reported so far is able to cover the full <span>\\(^{13}\\)</span>C aliphatic region on 1.2 GHz spectrometers. In this work, we present band-selective 90° and 180° universal rotation pulses (SURBOP90 and SURBOP180) that have a higher ratio of selective bandwidth to maximum rf-amplitude than standard pulses. Simulations show that these pulses perform better than standard pulses, e. g. Q3/Q5, especially when rf-inhomogeneity is taken into account. The theoretical and experimental performance is demonstrated in offset profiles and by implementing the SURBOP pulses in an HNCACB experiment at 1.2 GHz.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"76 5-6","pages":"185 - 195"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-022-00404-1.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-022-00404-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Biomolecular NMR spectroscopy requires large magnetic field strengths for high spectral resolution. Today’s highest fields comprise proton Larmor frequencies of 1.2 GHz and even larger field strengths are to be expected in the future. In protein triple resonance experiments, various carbon bandwidths need to be excited by selective pulses including the large aliphatic chemical shift range. When the spectrometer field strength is increased, the length of these pulses has to be decreased by the same factor, resulting in higher rf-amplitudes being necessary in order to cover the required frequency region. Currently available band-selective pulses like Q3/Q5 excite a narrow bandwidth compared to the necessary rf-amplitude. Because the maximum rf-power allowed in probeheads is limited, none of the selective universal rotation pulses reported so far is able to cover the full \(^{13}\)C aliphatic region on 1.2 GHz spectrometers. In this work, we present band-selective 90° and 180° universal rotation pulses (SURBOP90 and SURBOP180) that have a higher ratio of selective bandwidth to maximum rf-amplitude than standard pulses. Simulations show that these pulses perform better than standard pulses, e. g. Q3/Q5, especially when rf-inhomogeneity is taken into account. The theoretical and experimental performance is demonstrated in offset profiles and by implementing the SURBOP pulses in an HNCACB experiment at 1.2 GHz.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.