Abhishek Prashant, Meetu Luthra, Kanupriya Goswami, A. Bharadvaja, K. L. Baluja
{"title":"Positron Scattering from Pyrimidine","authors":"Abhishek Prashant, Meetu Luthra, Kanupriya Goswami, A. Bharadvaja, K. L. Baluja","doi":"10.3390/atoms11030055","DOIUrl":null,"url":null,"abstract":"The positron impact cross-sections of pyrimidine molecules are reported from 1 eV to 5000 eV. These cross-sections include differential elastic, integral elastic, and direct ionisation. The elastic cross-sections are computed using the single-centre expansion scheme whereas the direct ionisation cross-sections are obtained using the binary-encounter-Bethe formula. The integral and differential cross-sections exhibit consistency with the experimental and other theoretical results. The direct ionisation cross-sections, which are reported for the first time, are compared with the experimental inelastic cross-sections (the sum of excitation and ionisation) to assess the trends in theoretically computed ionisation cross-sections and with the corresponding results for the electrons. The incoherently summed elastic and ionisation cross-sections match very well with the total cross-sections after 40 eV indicating the minimal impact of the positronium formation and electronic excitation processes. Based on this study, we recommend that the experimental data of the inelastic cross-sections reported by Palihawadana et al. be revisited.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11030055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The positron impact cross-sections of pyrimidine molecules are reported from 1 eV to 5000 eV. These cross-sections include differential elastic, integral elastic, and direct ionisation. The elastic cross-sections are computed using the single-centre expansion scheme whereas the direct ionisation cross-sections are obtained using the binary-encounter-Bethe formula. The integral and differential cross-sections exhibit consistency with the experimental and other theoretical results. The direct ionisation cross-sections, which are reported for the first time, are compared with the experimental inelastic cross-sections (the sum of excitation and ionisation) to assess the trends in theoretically computed ionisation cross-sections and with the corresponding results for the electrons. The incoherently summed elastic and ionisation cross-sections match very well with the total cross-sections after 40 eV indicating the minimal impact of the positronium formation and electronic excitation processes. Based on this study, we recommend that the experimental data of the inelastic cross-sections reported by Palihawadana et al. be revisited.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions