Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games

Shu Liang, Peng Yi, Yiguang Hong, Kaixiang Peng
{"title":"Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games","authors":"Shu Liang,&nbsp;Peng Yi,&nbsp;Yiguang Hong,&nbsp;Kaixiang Peng","doi":"10.1007/s43684-022-00024-4","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed Nash equilibrium seeking of aggregative games is investigated and a continuous-time algorithm is proposed. The algorithm is designed by virtue of projected gradient play dynamics and aggregation tracking dynamics, and is applicable to games with constrained strategy sets and weight-balanced communication graphs. The key feature of our method is that the proposed projected dynamics achieves exponential convergence, whereas such convergence results are only obtained for non-projected dynamics in existing works on distributed optimization and equilibrium seeking. Numerical examples illustrate the effectiveness of our methods.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-022-00024-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-022-00024-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed Nash equilibrium seeking of aggregative games is investigated and a continuous-time algorithm is proposed. The algorithm is designed by virtue of projected gradient play dynamics and aggregation tracking dynamics, and is applicable to games with constrained strategy sets and weight-balanced communication graphs. The key feature of our method is that the proposed projected dynamics achieves exponential convergence, whereas such convergence results are only obtained for non-projected dynamics in existing works on distributed optimization and equilibrium seeking. Numerical examples illustrate the effectiveness of our methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束聚合对策的指数收敛分布式纳什均衡寻求
研究了聚合博弈的分布式纳什均衡寻求,并提出了一种连续时间算法。该算法是根据投影梯度博弈动力学和聚合跟踪动力学设计的,适用于具有受限策略集和权重平衡通信图的博弈。我们的方法的主要特点是所提出的投影动力学实现了指数收敛,而在现有的分布式优化和均衡寻求著作中,只有非投影动力学才能获得这样的收敛结果。数值示例说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Enhancing object detection through global collaborative learning Distributed integrated design for optimity and safety of hypersonic flight vehicle swarm ChatMPC: a language-driven model predictive control framework for adaptive and personalized autonomous driving Comparative analysis of feature selection and classification techniques for robust broken rotor bar diagnosis in induction motors using current and vibration signals Attention-Gaussian-LSTM-Wiener based remaining useful life prediction method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1