Improved t-SNE in Anomaly Detection of Cloud Virtual Machine

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Enterprise Information Systems Pub Date : 2021-10-26 DOI:10.1080/17517575.2021.1995784
Fu Zhuang, Guoyuan Lin, Huanye He, Yifan Zhang, Yonggang Li, Hao Gu
{"title":"Improved t-SNE in Anomaly Detection of Cloud Virtual Machine","authors":"Fu Zhuang, Guoyuan Lin, Huanye He, Yifan Zhang, Yonggang Li, Hao Gu","doi":"10.1080/17517575.2021.1995784","DOIUrl":null,"url":null,"abstract":"ABSTRACT Aiming at high computation time in the process of cloud virtual machine anomaly detection, a C-t-SNE algorithm suitable for cloud is proposed. The algorithm classifies the virtual machines according to the different tasks, constructs the projection space according to the relevant parameters of the cloud virtual machines. Before dimensionality reduction, comparison datasets are extracted from each cloud virtual machine according to the relationship between the cloud virtual machine and the task. In the process of dimensionality reduction, all cloud virtual machines are replaced by comparison datasets, so as to reduce the number of data comparison and the calculation time.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1995784","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Aiming at high computation time in the process of cloud virtual machine anomaly detection, a C-t-SNE algorithm suitable for cloud is proposed. The algorithm classifies the virtual machines according to the different tasks, constructs the projection space according to the relevant parameters of the cloud virtual machines. Before dimensionality reduction, comparison datasets are extracted from each cloud virtual machine according to the relationship between the cloud virtual machine and the task. In the process of dimensionality reduction, all cloud virtual machines are replaced by comparison datasets, so as to reduce the number of data comparison and the calculation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的t-SNE在云虚拟机异常检测中的应用
摘要针对云虚拟机异常检测过程中计算时间长的问题,提出了一种适用于云的C-t-SNE算法。该算法根据不同的任务对虚拟机进行分类,根据云虚拟机的相关参数构建投影空间。在降维之前,根据云虚拟机与任务之间的关系,从每个云虚拟机中提取比较数据集。在降维过程中,所有云虚拟机都被比较数据集取代,以减少数据比较的次数和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
期刊最新文献
Decentralized finance (DeFi): a paradigm shift in the Fintech Credit risk evaluation on technological SMEs in China An exploratory data analysis of malware/ransomware cyberattacks: insights from an extensive cyber loss dataset Co-creating value in manufacturing supply chains: unravelling the dynamics of innovation ecosystems A systematic data-driven approach for targeted marketing in enterprise information system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1