Image Clustering and Feature Extraction by Utilizing an Improvised Unsupervised Learning Approach

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2023-06-01 DOI:10.2478/cait-2023-0010
R. Bhuvanya, M. Kavitha
{"title":"Image Clustering and Feature Extraction by Utilizing an Improvised Unsupervised Learning Approach","authors":"R. Bhuvanya, M. Kavitha","doi":"10.2478/cait-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract The need for information is gradually shifting from text to images due to the technology’s growth and increase in digital images. It is quite challenging for people to find similar color images. To obtain similarity matching, the color of the image needs to be identified. This paper aims at various clustering techniques to identify the color of the digital image. Though many clustering techniques exist, this paper focuses on Fuzzy c-Means, Mean-Shift, and a hybrid technique that amalgamates the agglomerative hierarchies and k-Means, known as hKmeans to cluster the intensity of the image. Applying evaluation metrics of Mean Squared Error, Root Mean Squared Error, Mean Absolute Error, Homogeneity, Completeness, V-Score, and Peak signal-to-noise ratio it is proven that the results obtained demonstrate the good performance of the proposed technique. Then the color histogram is applied to identify the color and differentiate the color distribution on the original and clustered image.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The need for information is gradually shifting from text to images due to the technology’s growth and increase in digital images. It is quite challenging for people to find similar color images. To obtain similarity matching, the color of the image needs to be identified. This paper aims at various clustering techniques to identify the color of the digital image. Though many clustering techniques exist, this paper focuses on Fuzzy c-Means, Mean-Shift, and a hybrid technique that amalgamates the agglomerative hierarchies and k-Means, known as hKmeans to cluster the intensity of the image. Applying evaluation metrics of Mean Squared Error, Root Mean Squared Error, Mean Absolute Error, Homogeneity, Completeness, V-Score, and Peak signal-to-noise ratio it is proven that the results obtained demonstrate the good performance of the proposed technique. Then the color histogram is applied to identify the color and differentiate the color distribution on the original and clustered image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用改进的无监督学习方法进行图像聚类和特征提取
摘要由于数字图像技术的发展和增加,对信息的需求正逐渐从文本转向图像。人们很难找到相似颜色的图像。为了获得相似性匹配,需要识别图像的颜色。本文针对各种聚类技术来识别数字图像的颜色。尽管存在许多聚类技术,但本文侧重于模糊c-均值、均值偏移和一种将聚集层次和k-均值合并的混合技术,即hKmeans,以对图像的强度进行聚类。应用均方误差、均方根误差、均绝对误差、齐性、完整性、V-Score和峰值信噪比的评估指标,证明了所获得的结果证明了所提出的技术的良好性能。然后应用颜色直方图来识别颜色,并区分原始图像和聚类图像上的颜色分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1