{"title":"Modelo predictivo para la detección temprana de estudiantes con alto riesgo de deserción académica","authors":"Kevin Rivera Vergaray","doi":"10.48168/innosoft.s6.a40","DOIUrl":null,"url":null,"abstract":"Se comparan los resultados de 4 modelos predictivos, de regresión logística, árboles de decisión, KNN y una red neuronal para predecir la deserción académica de estudiantes en la Universidad Nacional Intercultural de la Amazonía, aplicado a un dataset extraído de la base de datos del sistema de gestión académica de la universidad, que contiene datos socioeconómicos y de rendimiento académico los cuales fueron procesados y formateados utilizando técnicas de onehotencoding para así poder aplicar los modelos predictivos ya mencionados. Para el procesamiento y formateo de datos se utilizó consultas Transac Sql y la aplicación de los modelos predictivos se hizo a través del Software Knime y utilizando Python a través de Google Colab. Los resultados obtenidos al aplicar 4 modelos predictivos son muy buenos ya que todos superaron el 80% de Accuracy, lo cual garantiza que puedan ser puestos en producción para el beneficio de la universidad y así pueda tomar mejores decisiones a la hora de abordar la deserción académica. Se concluye que aplicar un modelo predictivo en las universidades para la detección temprana de estudiantes con alto riesgo de deserción académica es viable y muy beneficioso para que las universidades a través de sus gestores académicos puedan aplicar estrategias mas focalizadas para reducir sus índices de deserción académica.","PeriodicalId":52619,"journal":{"name":"Innovacion y Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovacion y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48168/innosoft.s6.a40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Se comparan los resultados de 4 modelos predictivos, de regresión logística, árboles de decisión, KNN y una red neuronal para predecir la deserción académica de estudiantes en la Universidad Nacional Intercultural de la Amazonía, aplicado a un dataset extraído de la base de datos del sistema de gestión académica de la universidad, que contiene datos socioeconómicos y de rendimiento académico los cuales fueron procesados y formateados utilizando técnicas de onehotencoding para así poder aplicar los modelos predictivos ya mencionados. Para el procesamiento y formateo de datos se utilizó consultas Transac Sql y la aplicación de los modelos predictivos se hizo a través del Software Knime y utilizando Python a través de Google Colab. Los resultados obtenidos al aplicar 4 modelos predictivos son muy buenos ya que todos superaron el 80% de Accuracy, lo cual garantiza que puedan ser puestos en producción para el beneficio de la universidad y así pueda tomar mejores decisiones a la hora de abordar la deserción académica. Se concluye que aplicar un modelo predictivo en las universidades para la detección temprana de estudiantes con alto riesgo de deserción académica es viable y muy beneficioso para que las universidades a través de sus gestores académicos puedan aplicar estrategias mas focalizadas para reducir sus índices de deserción académica.