A novel multi-element flame retardant containing phosphorus, nitrogen and sulfur for enhancing the fire safety of epoxy resin composites

IF 1.8 4区 化学 Q3 POLYMER SCIENCE High Performance Polymers Pub Date : 2023-08-08 DOI:10.1177/09540083231194706
Junwei Li, Quanyi Liu, Yumei Zhou, Yuming Cai, Kaikai Shi, Haihan Zhao, Yawei Meng, Penglun Zheng
{"title":"A novel multi-element flame retardant containing phosphorus, nitrogen and sulfur for enhancing the fire safety of epoxy resin composites","authors":"Junwei Li, Quanyi Liu, Yumei Zhou, Yuming Cai, Kaikai Shi, Haihan Zhao, Yawei Meng, Penglun Zheng","doi":"10.1177/09540083231194706","DOIUrl":null,"url":null,"abstract":"To gain insight into more about how flame retardants containing phosphorus, sulfur, and nitrogen affect epoxy resin (EPs), a multicomponent flame retardant (Sp-ACDH) containing P/N/S was synthesized from sodium p-aminobenzene sulfonate (Sp-A), cinnamaldehyde and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and applied to epoxy resin. Sp-ACDH enables the epoxy resin to achieve the desired flame retardancy. For example, with the addition of 10 wt% Sp-ACDH, the epoxy composite passed the UL-94 V-0 rating and achieved an LOI of 32.7%. Additionally, Sp-ACDH effectively slowed down EP’s ability to release heat, with EP-15 Sp-ACDH exhibiting a peak heat release rate (PHRR) that was 680 kW/m2 rather than pure EP’s 1204.4 kW/m2. Eventually, the samples were characterized using Scanning electron microscopy (SEM), Raman spectroscopy, and Thermogravimetric analysis-fourier transform infrared spectroscopy (TG-FTIR) spectra, and the samples were analyzed, it revealed that Sp-ACDH’s flame-retardant properties were active in both the gas and condensed phases.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231194706","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To gain insight into more about how flame retardants containing phosphorus, sulfur, and nitrogen affect epoxy resin (EPs), a multicomponent flame retardant (Sp-ACDH) containing P/N/S was synthesized from sodium p-aminobenzene sulfonate (Sp-A), cinnamaldehyde and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and applied to epoxy resin. Sp-ACDH enables the epoxy resin to achieve the desired flame retardancy. For example, with the addition of 10 wt% Sp-ACDH, the epoxy composite passed the UL-94 V-0 rating and achieved an LOI of 32.7%. Additionally, Sp-ACDH effectively slowed down EP’s ability to release heat, with EP-15 Sp-ACDH exhibiting a peak heat release rate (PHRR) that was 680 kW/m2 rather than pure EP’s 1204.4 kW/m2. Eventually, the samples were characterized using Scanning electron microscopy (SEM), Raman spectroscopy, and Thermogravimetric analysis-fourier transform infrared spectroscopy (TG-FTIR) spectra, and the samples were analyzed, it revealed that Sp-ACDH’s flame-retardant properties were active in both the gas and condensed phases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型含磷、氮、硫多元阻燃剂提高环氧树脂复合材料的防火安全性
为了深入了解含磷、硫和氮的阻燃剂对环氧树脂的影响,以对氨基苯磺酸钠(Sp-a)、肉桂醛和9,10-二氢-9-氧杂-10-磷对映菲-10-氧化物(DOPO)为原料,合成了一种含P/N/S的多组分阻燃剂(Sp-ACDH),并将其应用于环氧树脂中。Sp-ACDH使环氧树脂能够实现所需的阻燃性。例如,添加10 wt%的Sp-ACDH后,环氧树脂复合材料通过了UL-94 V-0评级,LOI达到32.7%。此外,Sp-ACDH有效减缓了EP的放热能力,EP-15 Sp-ADCH的峰值放热率(PHRR)为680 kW/m2,而不是纯EP的1204.4 kW/m2。最后,使用扫描电子显微镜(SEM)、拉曼光谱和热重分析傅立叶变换红外光谱(TG-FTIR)对样品进行了表征,并对样品进行分析,结果表明Sp-ACDH的阻燃性能在气相和冷凝相中都是活性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Performance Polymers
High Performance Polymers 化学-高分子科学
CiteScore
4.20
自引率
14.30%
发文量
106
审稿时长
1.2 months
期刊介绍: Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.
期刊最新文献
The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers Analysis of the impact of exfoliated graphene oxide on the mechanical performance and in-plane fracture resistance of epoxy-based nanocomposite Preparation of halogen-free flame retardant curing agent and its application in epoxy resin Bio-based phthalonitrile resin derived from quercetin as a sustainable molecular scaffold: Synthesis, curing reaction and comparison with petroleum-based counterparts Copolymerization of novel self-promoted curing phthalonitrile with epoxy resin and its thermal property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1