Grzegorz Borkowski, A. Martyla, Marta Dobrosielska, P. Marciniak, Julia Głowacka, Daria Pakuła, E. Gabriel, R. Przekop
{"title":"Characterisation of carbonate lake sediments as a potential filler for polymer composites","authors":"Grzegorz Borkowski, A. Martyla, Marta Dobrosielska, P. Marciniak, Julia Głowacka, Daria Pakuła, E. Gabriel, R. Przekop","doi":"10.1515/gps-2022-8082","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of the study was to determine whether lake sediments could be a potential raw material for the plastics industry. The examined samples were obtained in a complex process of sediment collection from Lake Swarzędzkie located in the region of Wielkopolska, Poland, followed by granulometric analysis by sieving and quartz grain shape analysis, with preparation of geotechnical sheets. The works involved the examination of physico-chemical characteristics of carbonate lake sediments and the analysis of impact of the sediments’ depth extraction on their chemical composition and physico-chemical properties. The lake sediment consists mainly of calcium carbonate (CaCO3) and can be a potential filler for plastics. Tests were carried out to determine chemical composition of the sediments and their thermal stability. The thermogravimetric analysis showed the three stages of the thermal decomposition. Sediments in deeper layers of the lake are characterised by the presence of not only CaCO3 and silica, but also other chemical compounds, including aluminosilicates. In addition, as the depth increases, the average size of sediment particles changes, with the main fraction particle size being the smallest for the material from the 6–12 m depth. Additionally, carbon content systematically decreases with increasing depth.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The purpose of the study was to determine whether lake sediments could be a potential raw material for the plastics industry. The examined samples were obtained in a complex process of sediment collection from Lake Swarzędzkie located in the region of Wielkopolska, Poland, followed by granulometric analysis by sieving and quartz grain shape analysis, with preparation of geotechnical sheets. The works involved the examination of physico-chemical characteristics of carbonate lake sediments and the analysis of impact of the sediments’ depth extraction on their chemical composition and physico-chemical properties. The lake sediment consists mainly of calcium carbonate (CaCO3) and can be a potential filler for plastics. Tests were carried out to determine chemical composition of the sediments and their thermal stability. The thermogravimetric analysis showed the three stages of the thermal decomposition. Sediments in deeper layers of the lake are characterised by the presence of not only CaCO3 and silica, but also other chemical compounds, including aluminosilicates. In addition, as the depth increases, the average size of sediment particles changes, with the main fraction particle size being the smallest for the material from the 6–12 m depth. Additionally, carbon content systematically decreases with increasing depth.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.