An RGB-NIR Image Fusion Method for Improving Feature Matching

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2020-07-01 DOI:10.46604/ijeti.2020.5177
Hanhoon Park
{"title":"An RGB-NIR Image Fusion Method for Improving Feature Matching","authors":"Hanhoon Park","doi":"10.46604/ijeti.2020.5177","DOIUrl":null,"url":null,"abstract":"The quality of RGB images can be degraded by poor weather or lighting conditions. Thus, to make computer vision techniques work correctly, images need to be enhanced first. This paper proposes an RGB image enhancement method for improving feature matching which is a core step in most computer vision techniques. The proposed method decomposes near-infrared (NIR) image into fine detail, medium detail, and base images by using weighted least squares filters (WLSF) and boosts the medium detail image. Then, the fine and boosted medium detail images are combined, and the combined NIR detail image replaces the luminance detail image of an RGB image. Experiments demonstrates that the proposed method can effectively enhance RGB image; hence more stable image features are extracted. In addition, the method can minimize the loss of the useful visual (or optical) information of the original RGB image that can be used for other vision tasks.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2020.5177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

The quality of RGB images can be degraded by poor weather or lighting conditions. Thus, to make computer vision techniques work correctly, images need to be enhanced first. This paper proposes an RGB image enhancement method for improving feature matching which is a core step in most computer vision techniques. The proposed method decomposes near-infrared (NIR) image into fine detail, medium detail, and base images by using weighted least squares filters (WLSF) and boosts the medium detail image. Then, the fine and boosted medium detail images are combined, and the combined NIR detail image replaces the luminance detail image of an RGB image. Experiments demonstrates that the proposed method can effectively enhance RGB image; hence more stable image features are extracted. In addition, the method can minimize the loss of the useful visual (or optical) information of the original RGB image that can be used for other vision tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进特征匹配的RGB-NIR图像融合方法
恶劣的天气或照明条件可能会降低RGB图像的质量。因此,要使计算机视觉技术正确工作,首先需要增强图像。本文提出了一种改进特征匹配的RGB图像增强方法,这是大多数计算机视觉技术的核心步骤。该方法通过使用加权最小二乘滤波器(WLSF)将近红外(NIR)图像分解为精细细节、中等细节和基本图像,并增强中等细节图像。然后,精细和增强的中等细节图像被组合,并且组合的NIR细节图像替换RGB图像的亮度细节图像。实验表明,该方法能够有效地增强RGB图像;因此提取了更稳定的图像特征。此外,该方法可以最大限度地减少可用于其他视觉任务的原始RGB图像的有用视觉(或光学)信息的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
Domain Adaptation for Roasted Coffee Bean Quality Inspection Design of Deep Learning Acoustic Sonar Receiver with Temporal/ Spatial Underwater Channel Feature Extraction Capability Grid Operation and Inspection Resource Scheduling Based on an Adaptive Genetic Algorithm Closed-House Biofilter Design and Performance Evaluation for Mitigating Environmental Odor Disturbances Analysis of Drain-Induced Barrier Lowering for Gate-All-Around FET with Ferroelectric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1