Ngoc Tien Le, Truong Le-Huu, Ngoc An Nguyen, S. Ta, Khac Kiem Nguyen, N. Nguyen-Trong
{"title":"Gain and Frequency-Selectivity Enhancement of Dual- Polarized Filtering IBFD Antenna Using PRS","authors":"Ngoc Tien Le, Truong Le-Huu, Ngoc An Nguyen, S. Ta, Khac Kiem Nguyen, N. Nguyen-Trong","doi":"10.26866/jees.2023.4.r.173","DOIUrl":null,"url":null,"abstract":"A dual-polarized filtering Fabry–Perot antenna (FPA) with high selectivity and high isolation is proposed for in-band full-duplex (IBFD) applications. The proposed antenna utilizes a square patch as the feeding element, which is fed by a double differential-fed scheme for dual-polarized radiation with high isolation. The patch is loaded with a symmetrical cross-slot and four shorting pins for a broad passband filtering feature. To enhance broadside gain across a wide frequency range, the patch is incorporated with a partially reflecting surface (PRS), which is composed of two complementary cross-slot and patch arrays. Moreover, the frequency selectivity of PRS is exploited to improve the filtering characteristic. The double differential feeds are realized based on out-of-phase power dividers, which are combined with simple low-pass filters to further improve the out-of-band suppression. The final design was fabricated and measured. The measurement results show excellent results with a 10-dB return loss bandwidth of 21.5% (4.91–6.09 GHz), isolation of greater than 40 dB, peak gain of 13.7 dBi, out-of-band suppression level of better than 27 dB, and a cross-polarization level of less than –27 dB.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.4.r.173","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A dual-polarized filtering Fabry–Perot antenna (FPA) with high selectivity and high isolation is proposed for in-band full-duplex (IBFD) applications. The proposed antenna utilizes a square patch as the feeding element, which is fed by a double differential-fed scheme for dual-polarized radiation with high isolation. The patch is loaded with a symmetrical cross-slot and four shorting pins for a broad passband filtering feature. To enhance broadside gain across a wide frequency range, the patch is incorporated with a partially reflecting surface (PRS), which is composed of two complementary cross-slot and patch arrays. Moreover, the frequency selectivity of PRS is exploited to improve the filtering characteristic. The double differential feeds are realized based on out-of-phase power dividers, which are combined with simple low-pass filters to further improve the out-of-band suppression. The final design was fabricated and measured. The measurement results show excellent results with a 10-dB return loss bandwidth of 21.5% (4.91–6.09 GHz), isolation of greater than 40 dB, peak gain of 13.7 dBi, out-of-band suppression level of better than 27 dB, and a cross-polarization level of less than –27 dB.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.