Smart sensor tights: Movement tracking of the lower limbs in football.

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2021-11-29 eCollection Date: 2021-01-01 DOI:10.1017/wtc.2021.16
Annemarijn Steijlen, Bastiaan Burgers, Erik Wilmes, Jeroen Bastemeijer, Bram Bastiaansen, Patrick French, Andre Bossche, Kaspar Jansen
{"title":"Smart sensor tights: Movement tracking of the lower limbs in football.","authors":"Annemarijn Steijlen, Bastiaan Burgers, Erik Wilmes, Jeroen Bastemeijer, Bram Bastiaansen, Patrick French, Andre Bossche, Kaspar Jansen","doi":"10.1017/wtc.2021.16","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a novel smart sensor garment with integrated miniaturized inertial measurements units (IMUs) that can be used to monitor lower body kinematics during daily training activities, without the need of extensive technical assistance throughout the measurements. The smart sensor tights enclose five ultra-light sensor modules that measure linear accelerations, angular velocities, and the earth magnetic field in three directions. The modules are located at the pelvis, thighs, and shanks. The garment enables continuous measurement in the field at high sample rates (250 Hz) and the sensors have a large measurement range (32 g, 4,000°/s). They are read out by a central processing unit through an SPI bus, and connected to a centralized battery in the waistband. A fully functioning prototype was built to perform validation studies in a lab setting and in a field setting. In the lab validation study, the IMU data (converted to limb orientation data) were compared with the kinematic data of an optoelectronic measurement system and good validity (CMCs >0.8) was shown. In the field tests, participants experienced the tights as comfortable to wear and they did not feel restricted in their movements. These results show the potential of using the smart sensor tights on a regular base to derive lower limb kinematics in the field.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2021.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel smart sensor garment with integrated miniaturized inertial measurements units (IMUs) that can be used to monitor lower body kinematics during daily training activities, without the need of extensive technical assistance throughout the measurements. The smart sensor tights enclose five ultra-light sensor modules that measure linear accelerations, angular velocities, and the earth magnetic field in three directions. The modules are located at the pelvis, thighs, and shanks. The garment enables continuous measurement in the field at high sample rates (250 Hz) and the sensors have a large measurement range (32 g, 4,000°/s). They are read out by a central processing unit through an SPI bus, and connected to a centralized battery in the waistband. A fully functioning prototype was built to perform validation studies in a lab setting and in a field setting. In the lab validation study, the IMU data (converted to limb orientation data) were compared with the kinematic data of an optoelectronic measurement system and good validity (CMCs >0.8) was shown. In the field tests, participants experienced the tights as comfortable to wear and they did not feel restricted in their movements. These results show the potential of using the smart sensor tights on a regular base to derive lower limb kinematics in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能传感器紧身衣:足球运动中下肢的运动跟踪
摘要本文介绍了一种新型智能传感器服装,该服装具有集成的小型惯性测量单元(IMU),可用于在日常训练活动中监测下半身运动学,而无需在整个测量过程中提供广泛的技术援助。智能传感器紧身衣包含五个超轻型传感器模块,用于测量三个方向的线性加速度、角速度和地球磁场。模块位于骨盆、大腿和小腿处。该服装能够以高采样率(250 Hz)在现场进行连续测量,传感器具有大的测量范围(32 g,4000°/s)。它们由中央处理单元通过SPI总线读出,并连接到腰带上的中央电池。建立了一个功能齐全的原型,用于在实验室和现场进行验证研究。在实验室验证研究中,将IMU数据(转换为肢体方位数据)与光电测量系统的运动学数据进行了比较,并显示出良好的有效性(CMCs>0.8)。在现场测试中,参与者体验到紧身裤穿着舒适,而且他们的动作没有受到限制。这些结果显示了在常规基础上使用智能传感器紧身衣来推导该领域下肢运动学的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM. A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1