Disk-Shaped Random Scatterers With Application to Model-Based PolSAR Decomposition

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2021-11-01 DOI:10.1109/lgrs.2020.3011917
Yanting Wang, T. Ainsworth, Jong-Sen Lee
{"title":"Disk-Shaped Random Scatterers With Application to Model-Based PolSAR Decomposition","authors":"Yanting Wang, T. Ainsworth, Jong-Sen Lee","doi":"10.1109/lgrs.2020.3011917","DOIUrl":null,"url":null,"abstract":"Polarimetric SAR (PolSAR) imagery offers an enhanced capability to reveal the salient scattering properties of scene content. PolSAR-based target decomposition has been widely used to show different apparent scattering mechanisms for various target classes, empowering a direct yet powerful technique for SAR imagery analysis. Among those common targets, modeling the random volume scattering from vegetation is one of the most important. Generally, one models vegetation as a cloud of randomly oriented thin cylinders, mainly intended for twigs and branches. At high radar frequencies, PolSAR imagery shows a strong response from leaves in the vegetation canopy. In this letter, we derive the polarimetric scattering theory for general random volume scatterers, including both thin cylinders and thin disks as limiting cases for leaf response. Adding the proposed random thin disk model explains the observed scattering difference between deciduous forest and coniferous forest, which we then incorporate into a new model-based PolSAR target decomposition scheme.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1961-1965"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3011917","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3011917","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

Abstract

Polarimetric SAR (PolSAR) imagery offers an enhanced capability to reveal the salient scattering properties of scene content. PolSAR-based target decomposition has been widely used to show different apparent scattering mechanisms for various target classes, empowering a direct yet powerful technique for SAR imagery analysis. Among those common targets, modeling the random volume scattering from vegetation is one of the most important. Generally, one models vegetation as a cloud of randomly oriented thin cylinders, mainly intended for twigs and branches. At high radar frequencies, PolSAR imagery shows a strong response from leaves in the vegetation canopy. In this letter, we derive the polarimetric scattering theory for general random volume scatterers, including both thin cylinders and thin disks as limiting cases for leaf response. Adding the proposed random thin disk model explains the observed scattering difference between deciduous forest and coniferous forest, which we then incorporate into a new model-based PolSAR target decomposition scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圆盘形随机散射体及其在基于模型的PolSAR分解中的应用
极化SAR(PolSAR)图像提供了一种增强的能力来揭示场景内容的显著散射特性。基于PolSAR的目标分解已被广泛用于显示不同目标类别的不同表观散射机制,为SAR图像分析提供了一种直接而强大的技术。在这些常见的目标中,植被的随机体积散射建模是最重要的目标之一。通常,人们将植被建模为一团随机定向的薄圆柱体,主要用于树枝和树枝。在高雷达频率下,PolSAR图像显示植被冠层中的树叶有强烈的响应。在这封信中,我们推导了一般随机体积散射体的极化散射理论,包括薄圆柱体和薄圆盘作为叶响应的极限情况。添加所提出的随机薄板模型解释了落叶林和针叶林之间观测到的散射差异,然后我们将其纳入一个新的基于模型的PolSAR目标分解方案中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1