Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case

E. Bentivegna
{"title":"Performance of the Scheduled Relaxation Jacobi method in a geometric multilevel setting. I. Linear case","authors":"E. Bentivegna","doi":"10.1088/2633-1357/abd8e3","DOIUrl":null,"url":null,"abstract":"I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abd8e3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I investigate the suitability of the Scheduled-Relaxation-Jacobi method as a smoother within a geometric multilevel (ML) solver. Its performance in the solution of a linear elliptic equation is measured, based on two metrics: absolute performance (measured by the residual reduction in a fixed number of iterations), and parallel scalability. I discuss the theoretical expectations on the effect of this hybrid scheme on the solution iterate and, especially, the solution error, and confirm them numerically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调度松弛Jacobi方法在几何多级设置中的性能。I.线性情况
我研究了调度松弛Jacobi方法作为几何多级(ML)求解器中的平滑器的适用性。它在线性椭圆方程求解中的性能是基于两个指标来衡量的:绝对性能(通过固定迭代次数中的残差减少来衡量)和并行可扩展性。我讨论了对该混合方案对解迭代的影响的理论期望,特别是对解的误差的期望,并对其进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Morphology exploration of pollen using deep learning latent space The infection and recovery periods of the 2022 outbreak of monkey-pox virus disease Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed Genome analysis of a plastisphere-associated Oceanimonas sp. NSJ1 sequenced on Nanopore MinION platform Prediction of malignant transformation in oral epithelial dysplasia using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1